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Abstract 

 

Despite the risks that ticks and tick-borne disease pose to the beef cattle industry, many 

Tennessee producers are unaware of the dangers they represent. This mindset could facilitate the 

invasion and establishment of exotic ticks and pathogens that would devastate the cattle industry. 

Current control practices rely on chemical methods, which are not effective long-term; therefore, 

investigations into creating an integrated approach to control would create more sustainable 

methods. This study aims to address this through two objectives: The first is to determine the 

species composition, seasonal prevalence, geographic distribution and diversity of ticks on 

Tennessee cattle. The second is to elucidate the core microbial community of Amblyomma 

maculatum and determine differences associated with blood-feeding, collection location, and 

sex. Ticks were collected from cattle at University of Tennessee research and education centers 

(REC), through an extension agent survey, and livestock auctions. 25% of the herd or 10 animals 

were sampled (IACUC# 2192, IBC# 384-15) whichever was greater. The V3-V4 region of the 

16S rRNA segment of bacterial genomes was amplified using the Illumina MiSeq platform.  

Mothur 1.33.2 was used in conjunction with the statistical software R (v3.3.0) to investigate the 

microbiome of A. maculatum. SAS software (9.4) was used to answer questions from objective 

one. Our results demonstrated that four tick species were parasites of beef cattle: Amblyomma 

americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. Seasonal 

impacts were not shown to have an impact on either infestation prevalence or burden of any tick 

species, although region of collection did have an effect on the infestation prevalence and burden 

of both the Total and Amblyomma maculatum. Co infestation was rare, although D. variabilis 

was commonly found feeding with A. americanum.  Several core microbial inhabitants of A. 

maculatum matched previous investigations, with sex, feeding status significantly influencing 

alpha diversity. Results suggested that A. americanum is a widespread and abundant pest of 

cattle, and added further support that the bacteria Francisella is an endosymbiot of A. 

maculatum.  Ultimately, investigating tick diversity and microbiome composition will improve 

existing control efforts and prepare cattle producers for invasive ticks and pathogens.   
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Literature Review 

 

Tick threats to cattle health: From a global perspective, ticks and tick-borne pathogens 

represent a serious threat to cattle and other livestock and hamper development of livestock 

production systems in many poor and developing countries. In fact, an estimated 80% of the 

world’s cattle are at a substantial risk of morbidity and mortality due to ticks and tick-borne 

pathogens (Snelson 1975). Ticks are ectoparasitic arthropods that require blood to complete their 

life cycle, and create protein for spermatogensis (Males) and oogenesis (Females). Ticks use 

specialized mouthparts to attach themselves to a host and blood-feed. This attachment can 

directly damage the host, causing blood loss and anemia. A notable example is ‘Gotch ear’, 

where heavy infestations of Amblyomma maculatum can lead to necrosis of the ear tissue as well 

as damage to the cartilage in cattle (Edwards 2011). Additionally, tick attachment can indirectly 

damage a host via the saliva secreted during feeding, including allergic reactions, irritation, 

toxicosis, bacterial infection of the wound, and accidental introduction of pathogens (Jongejan 

and Uilenberg 2004). Tick paralysis is a unique form of toxicosis, wherein toxins are released 

into the host’s bloodstream when the tick begins to feed (Goethe et al. 1979); for example, 

feeding by Dermacentor andersoni can cause paralysis and even death if not removed (Rich 

1973).  Tick-borne pathogens are responsible for serious morbidity and mortality in livestock, 

with anaplasmosis, babesiosis, heartwater, and theileriosis representing the greatest risk to cattle 

worldwide (McCosker 1979).  

 

Economics: The resulting damage from ticks and tick-borne diseases can cause significant 

economic impacts, with a global estimate of $7 billion USDs, including losses and control costs 

(McCosker 1979). More specifically, the estimated cost of theileriosis control in several 

countries in Africa was $168 million USD in 1989 (Mukhebi et al. 1992). In India, theileriosis 

cost $383.4 million USD (Minjauw and McLeod 2003). In Zimbabwe, the cost of mortality, 

treatment and control of Heartwater is $6.45 million USD (1991) (Meltzer et al. 1996) with the 

annual costs projected at $5.6 million USD (1997) if the disease continued to spread to 

unaffected parts of the country (Mukhebi et al. 1999). The combined cost of control and 

production losses attributed to ticks and tick-borne diseases in Tanzania was estimated at $364.8 

million USD, with theileriosis, anaplasmosis, babesiosis and heartwater accounting for $247.7, 

$48.13, $45.82, and $22.43 million USD respectively (Kivaria 2006). Although these figures are 

estimations, they do highlight the clear danger to animal health and food security that ticks 

represent and emphasize the importance of controlling these pests.  

 

Challenges in the U.S.: The current threat of ticks and tick-borne diseases in the United States 

(U.S.) does not reflect the full breadth of risks and challenges that these pests pose upon cattle 

production in other countries. While many countries struggle to develop productive cattle 

industries, the U.S. cattle industry thrives, contributing significantly to the country’s economy 

with sales of cattle and calves estimated at $76.4 billion USDs in 2012 (Vilsack and Clark 2014). 

However, ticks and tick-borne disease are still a threat to this industry due in part to direct 

damage to cattle through feeding attachment. Damage due to biting pressure has been noted for 

some tick species, including Amblyomma americanum where 15 feeding females is considered 

the injury threshold to pre-weaner beef cattle in Oklahoma (Barnard 1985) and A. maculatum 

where infestations of 25 – 30 adult ticks can result in decreases in weight gain observed in calves 
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(Williams et al. 1977, Williams et al. 1978). Additionally, ticks are still considered a threat 

because of their capacity to transmit the pathogen which causes Bovine Anaplasmosis.   

 

Bovine anaplasmosis (BA): is caused by infection with Anaplasma marginale, and has been 

detected over a large geographical area of the U.S. including the southern, midwestern, and 

western states (McCallon 1973).  Transmission of A. marginale can occur mechanically, wherein 

infected blood comes into contact with a naïve host through biting arthropods (Ewing 1981) or 

contaminated fomites. Additionally, biological transmission can occur in ticks (especially those 

in the genus Dermacentor) (Dikmans 1950, Kocan et al. 2004), where infected erythrocytes are 

ingested during blood-feeding and replication of the pathogen occurs within the tick gut.  Once 

infected, cattle can experience symptoms including: fever, anorexia, lethargy, decreased milk 

production, abortions, and death (Ristic 1977).  The pathogen evades the host immune system 

via antigenic variation by variable expression of surface proteins MSP-2 (French et al. 1998, 

Palmer et al. 2006) and MSP-3 (Futse et al. 2009). Therefore, animals that survive acute 

infection have permanent rickettsemia and are considered reservoirs for life (Richey 1981). 

Tetracycline antibiotics are used to treat infection, although there has been no clear evidence that 

this therapy can clear the carrier state (Franklin et al. 1965, Coetzee et al. 2005). Vaccines are 

available to mitigate symptoms of the disease, but cannot prevent cattle from becoming carriers 

(Kocan et al. 2003). Producers with BA infected cattle can incur financial losses due to treatment 

and control, which Goodger et al. (1979) estimated at $1.48 million USDs for California beef 

cattle. Therefore, although the damage incurred by ticks and tick-borne pathogens in the U.S. is 

comparatively less severe to other countries, these factors still represent a significant risk to the 

cattle industry; In addition to these endemic threats, there are several tick and tick-borne disease 

systems poised to invade the U.S., including bovine babesiosis and ehrlichiosis.  

 

Bovine babesiosis (BB): more commonly known as Texas cattle fever, is caused by infection 

with protozoan parastites in the genus Babesia, namely Babesia bovis, and Babesia bigemina.  

These pathogens are transmitted primarily through tick species of Rhipacephalus (formerly 

Boophilus), with the most important species in North America being R. microplus and R. 

annulatus. Cattle infected with these pathogens typically experience fever, loss of appetite, 

depression, weakness, abortions, muscle wasting, tremors, and coma leading to death (De Vos 

and Potgieter 1994). The discovery by Smith and Kilborne (1893) that R. annulatus served as a 

vector of the causative agents of BB combined with the significant economic damage to the U.S. 

cattle industry (estimated at $40 – 60 million USD annually in 1906 (Temeyer et al. 2004)) 

spurred eradication efforts that were declared successful in 1943. Florida suffered infestations of 

B. microplus until 1960, and continued infestations within a quarantine buffer zone persist in 

Texas (Graham and Hourrigan 1977). Efforts to prevent reestablishment of the tick vectors in the 

U.S. have consisted primarily of strict regulation of animals being imported from Mexico. 

Current treatments with babesiacides such as imidocarb diproprionate and diminazene aceturate 

can be effective to control infections in affected cattle (Bock et al. 2004). Vaccine use is limited 

due to several factors including: antigenic variance of Babesia parasites (Palmer et al. 1991, 

Allred et al. 1994, O'Connor et al. 1997), the disadvantages of using live vaccines (strict cold 

chain requirements and potential failure to achieve long term immunity), and a lack of 

commercially available killed vaccines (De Waal and Combrink 2006).  
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Bovine ehrlichiosis (BE): Commonly known as Heartwater, BE is caused by infection with 

Ehrlichia ruminantium (formerly Cowdria ruminantium). Several species of ticks in the genus 

Amblyomma can act as vectors, primarily A. variegatum and A. hebreum.  Symptoms in infected 

cattle range from subclinical infection to acute disease characterized by fever, loss of appetite, 

neurological signs, and death (Van de Pypekamp and Prozesky 1987). In the Carribean, an 

eradication program targeting A. variegatum was initiated due the widespread distribution of the 

tick throughout the islands (Burridge 1985), and the discovery of Heartwater on several islands 

(Perreau et al. 1979, Uilenberg et al. 1984, Birnie et al. 1985). Treatment with antibiotics must be 

administered quickly, as animals may not present symptoms before succumbing to the disease. 

Cattle that survive can have persistent infections, and remain as carriers of the pathogen for up to 

246 days (Andrew and Norval 1989). The best method of protection is with vaccination, via 

infection with live bacteria and subsequent treatment with tetracycline antibiotics following 

onset of febrile illness (Allsopp 2015). Investigations into other vaccination methods are 

hampered by a lack of cross reactivity to strain variants of E. ruminantium and increased 

virulence of tick challenge compared to needle challenge used in testing (Collins et al. 2003).  

 

Invasion potential of BB and BE: BB and BE are currently not found in the U.S., but do 

present a threat to animal health, food security, and the economic stability of the cattle industry. 

In general, there are several factors that can complicate prevention and control of foreign animal 

diseases, including “… free trade agreements, free trade blocks, regionalization, increased 

international passenger travel, intensification of animal production, the constant evolution of 

infectious agents, and the uncertain impact of biotechnology and bioterrorism” (Arnoldi 1998, p. 

12). Indeed, many factors are increasing the likelihood of invasion of the U.S. by these ticks and 

tick-borne pathogens. For BB, maintenance of a quarantine zone along the Texas-Mexico border 

has been accomplished through use of chemicals used to dip imported cattle. Although this 

method has proven successful in the past, R. microplus from Mexico have been shown to be 

resistant to a broad range of acarcides, including pyrethroids, amitraz, and organophosphates (Li 

et al. 2003, 2004, Miller et al. 2005, Li et al. 2007, Miller et al. 2008, Busch et al. 2014). White-

tailed deer (Odocoileus virginianus) serve as a complicating factor, as they are suitable hosts for 

both R. annulatus (Graham et al. 1972, Gray et al. 1979, Cooksey et al. 1989), and R. microplus 

(Kistner and Hayes 1970). Additionally, several of these authors note that deer may act as a 

vehicle for introduction of cattle fever ticks from infested into non-infested areas (Graham et al. 

1972, Gray et al. 1979, Cooksey et al. 1989).  Unregulated movement of deer across the Texas-

Mexico border would allow for continual re-infestation of cattle, making possible eradication 

efforts near impossible.  

 

Several routes of introduction are possible for BE entering the U.S., primarily through the 

movement of animals. Animals imported into the U.S. have been found to be viable hosts for 

Amblyomma ticks capable of transmitting E. ruminantium, or have been shown to serve as 

subclinical reservoirs for this pathogen. These include other wild ruminants (Peter et al. 1998, 

Wesonga et al. 2001) as well as reptiles (Allan et al. 1998, Burridge et al. 2000a, Burridge et al. 

2000b). Unregulated movement of wildlife also poses a threat of introduction as evidence 

suggests that cattle egrets (Bubulcus ibis) may serve as suitable hosts for immature A. 

variegatum (Barré et al. 1987, Barré et al. 1988, Barré et al. 1991) and that these birds can 

migrate from the Carribean to Florida (Corn et al. 1993). Additionally, E. ruminantium has been 

shown to infect O. virginianus in laboratory settings (Dardiri et al. 1987). The risk of 
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introduction is further complicated by the ability of the endemic tick species A. maculatum to act 

as an experimental vector of E. ruminantium (Uilenberg 1982). In fact, Mahan et al. (2000) 

demonstrated that A. maculatum was equally efficient at transmission as the primary vectors A. 

variegatum and A. hebraeum. Therefore, invasion by BE could occur through blood feeding on 

infected animals without the presence of the primary vectors.  

 

Tennessee beef cattle: The economic success of the beef cattle industry in the U.S. is mirrored 

in Tennessee, where sales from beef cattle produced primarily through cow-calf operations are 

estimated at over $735.5 million USDs in 2012 (Vilsack and Clark 2014). A large proportion of 

residents are involved in beef cattle production compared to other agricultural endeavors, and the 

cattle industry will likely remain a major source of revenue for the state (Neel 2013).  

 

Tick threats to the Tennessee cattle industry: Surveys have revealed that multiple tick species 

inhabit Tennessee (Durden and Kollars Jr 1992, Reeves et al. 2007, Cohen et al. 2010), with the 

species of greatest concern to human and animal health being Amblyomma americanum, 

Dermacentor variabilis, and Ixodes scapularis. Amblyomma maculatum, the vector of the human 

pathogen Rickettsia parkeri (Paddock et al. 2004) is comparatively much less common in 

Tennessee (Bishopp and Trembley 1945, Durden and Kollars Jr 1992). The only investigation of 

the ticks that parasitize cattle was conducted by Pompo et al. (2016), who found that A. 

americanum, D. variabilis, and A. maculatum were common to both cattle and pastures. These 

tick species are members of the Ixodidae and exhibit a three-host life cycle. Table 1 (Appendix 

A) estimates the seasonal activity and hosts of the life-stages of these aforementioned tick 

species 

 

Tick control methods: Cattle producers in Tennessee normally control tick pests incidentally 

when initiating control measures against other parasites (e.g. flies and worms), due in part to a 

lack of concern regarding ticks on cattle. In general, these control measures are almost solely 

reliant on chemical pesticides. This strategy is not uncommon, in fact past and current control 

methods for ticks and other ectoparasites of cattle in the U.S., have relied almost solely on 

chemical pesticides. From the discovery of the arsenical compounds to the most recent 

macrocyclic lactones and milbemycins, acaricides have offered an effective means of quickly 

controlling ticks at relatively low cost.  Despite these short-term benefits, reliance on this single 

control method has several negative consequences that make effective control difficult to achieve 

in the long term. First, many pestiferous tick species have developed resistance to most if not all 

the acaricidal compounds (compiled by George et al. (2004)). Resistance is considered one of the 

primary reasons for creating new acaricidal compounds (Graf et al. 2004); However, new 

compounds are increasingly expensive to manufacture and market, resulting in a shift in the 

acaricide industry to chemical products for companion animals which require less rigorous 

testing (Graf et al. 2004). This leaves cattle producers with a dwindling number of acaricides at 

their disposal. Second, chemical pesticides have a long list of negative consequences including 

non-target toxicity, runoff, bioaccumulation, and biomagnification that have become serious 

issues as public ecological awareness has risen.  

 

Due to these factors, alternative control strategies must be investigated and implemented to 

mitigate the consequences of acaricide use and promote sustainable control. A well-established 

practice that deserves more attention is integrated pest management (IPM) of ticks and other 
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veterinary pests, defined as “… the systemic application of two or more technologies, in an 

environmentally-compatible and cost-effective manner, to control arthropod pest populations 

which adversely affect livestock and poultry” (Bram 1994, p. 1358). In addition to acaricides, 

which would still be used judiciously to drop pest populations below economically damaging 

levels, several tactics can effectively control ticks and reduce losses to cattle productivity 

including: immunization against ticks and tick- borne disease, use of resistant cattle breeds, 

pasture and vegetation management, and biological control of ticks (Young et al. 1988, Barnard 

et al. 1994, de Castro 1997). An IPM program would be more sustainable compared to the 

methods currently employed in Tennessee, ultimately reducing the likelihood of ticks developing 

resistance to acaricides and extending the effective life of the products currently available to 

producers. Several key pieces of information must be discovered before such a strategy could be 

implemented in Tennessee, and includes the ecology of ticks, damage estimates, and control 

costs (Tatchell 1992). Furthermore, research into control tactics that could be employed in an 

IPM strategy will be vital to provide producers with a diversity of choices for achieving sound 

control. A potential technique to explore is Microbial Resource Management (MRM), which 

would harness the functions of microbes to overcome problems faced by humanity (Verstraete 

2007). Application of this theory in arthropods has generally focused on the use of organisms 

within the microbiome to achieve control or modification.   

 

Tick microbiome: The microbiome is a collection of all microorganisms that live on and within 

a host, and can include viruses, fungi, nematodes, protozoa, and bacteria. These microorganisms 

can serve various functions within the host, including acting in symbiotic (commensal, 

mutualistic) and parasitic (pathogenic) roles. Ticks are hosts for several genera of bacterial 

mammalian pathogens bacteria including Borrelia, Anaplasma, Ehrlichia, Rickettsia, 

Francisella, and Coxiella spp. (Nicholson et al. 2009). Investigations of the tick microbiome 

have focused primarily on the gut, as this is the first site of exposure to these pathogenic 

microbes following a blood meal. Several studies have investigated the microbiome of ticks, 

with a focus on those tick species that represent a risk to human and animal health, including: A. 

americanum, I. ricinus, R. microplus, and A. maculatum.  

 

Clay et al. (2008) investigated the microbial communities of questing adults, and clutches of 

larvae and eggs of A. americanum in the southeastern U.S. PCR was used to target the 16s rRNA 

region of the bacterial genome, and resulting DNA products were ligated into plasmid vectors 

and grown in E. coli. Sequencing the E. coli colonies indicated that both adults and larvae were 

mostly dominated by three genera of bacteria: Arsenophonas, Coxiella, and Rickettsia, with 

Coxiella being the dominant organism.  

 

Carpi et al. (2011) conducted a study to elucidate the microbiome of I. ricinus, as well as 

compare the microbiome composition of adults and nymphs collected in two distinct 

geographical locations in northern Italy. Using pyrosequing and Illumina technologies, they 

stated that the microbiome of I. ricinus was comprised of four bacterial genera (based on their 

ubiquitous detection): Slenoltrophomonas, Pseudomonas, Rhodococcus, and Propionobacterium. 

   

Andreotti et al. (2011) sought to characterize the microbiome of R. microplus males and females, 

eggs, and tissues of the gut and ovaries using tag-encoded pyrosequencing. A wide diversity of 

bacteria was identified in all samples, including: Arthrobacter, Bacillus, Enterobacter, 
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Pseudomonas, and Staphylococcus. However, the authors did not surface sterilize samples and 

admitted to the possibly of bacteria from the environment skewing their results. They suggested 

that the three genera Enterobacter, Pseudomonas, and Staphylococcus are most likely 

components of the internal microbiome based on comparisons to a similar study that followed 

strict surface sterilization protocol and dissection of tissue (Rahman and Rahman 1980).  

 

Budachetri et al. (2014) compared the microbiome of field caught and laboratory reared blood 

fed adult A. maculatum to elucidate the core microbiome. Using pyrosequencing of bacterial 16s 

rRNA, they found six bacterial genera were found in all wild caught tick tissues tested including 

Francisella, Rickettsia, Pseudomonas, and Escherichia, with Francisella being the most 

abundant and ubiquitous. Comparison to lab-reared ticks revealed that Francisella and 

Propionibacterium were common to both groups.  

 

Tick endosymbionts: Ticks are host to several non-pathogenic endosymbiotic bacteria related to 

pathogenic microbes including Francisella (Noda et al. 1997, Sun et al. 2000, Scoles 2004, 

Budachetri et al. 2017), Coxiella (Noda et al. 1997, Duron et al. 2015, Machado-Ferreira et al. 

2016) and Rickettsia (Noda et al. 1997). The exact function of these endosymbionts is not well 

understood, although it has been suggested that vertically transmitted bacteria [symbionts] must 

enhance their host (Fine 1975, Ewald 1987). Indeed, within A. americanum it has been 

demonstrated that the Coxiella endosymbiont likely functions in reproduction (Zhong et al. 

2007) and vitamin production (Smith et al. 2015). Additionally, the advantage of being infected 

with a vertically transmitted parasite is the prevention of infection by horizontally transmitted 

parasites (Lively et al. 2005). An example of this concept was demonstrated in Tsetse flies 

(Glossina morsitans) which had increased susceptibility to infection by the causative agent of 

African sleeping sickness (Trypanosoma brucei) following antibiotic elimination of the bacterial 

endosymbiont Wigglesworthia glossinidia (Pais et al. 2008). 

 

Interestingly, pathogens and endosymbionts often have close phylogenetic relationships that 

suggest evolution of one into another. For example, analysis of the genus Rickettsia suggested 

that endosymbiotic variants may be the source of pathogenic Rickettsia through outer surface 

protein alterations (Weller et al. 1998). Similarly, a Coxiella endosymbiont of ticks was the 

origin of the Q fever agent Coxiella burnetii, potentially through the acquisition of virulence 

genes (Duron et al. 2015).  Conversely, Francisella endosymbionts were found to be a sister 

taxon to the mammalian pathogen F. tularensis, suggesting that loss of virulence genes from the 

pathogen gave rise to the endosymbiont (Gerhart et al. 2016).  Close phylogenetic relationships 

could also mean there is potential for horizontal gene transfer between endosymbionts and 

pathogens. Two potential outcomes of this scenario are that endosymbionts could acquire 

virulence genes resulting in new emerging pathogens (Clay and Fuqua 2010), or existing 

pathogens could acquire antibiotic resistance genes from endosymbionts (Narasimhan and Fikrig 

2015).  

 

Microbiome variation: Changes in the structure and composition of the microbiome might 

further complicate the interactions between pathogenic and benign microbes. Several factors 

could lead to these changes including species, sex, life stage, environment, season, and 

geography (Narasimhan and Fikrig 2015). For instance, investigations into the microbial 

communities of A. americanum by Clay et al. (2008) found differential representation of 
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Arsenophonus and Rickettsia bacteria among collections in different geographic regions in the 

southeastern U.S. (AL, GA, NC, KY, IN, and MO) by analyzing 16s rRNA. The authors did not 

explain this effect, although geography could play a role. Similar findings were determined by 

Van Treuren et al. (2015) who investigated the effects of geography, species, and sex on the 

microbiome of Ixodes ticks in several locations along the eastern U.S. (NY, CT, NC, GA, VA). 

Using a combination of 454 pyrosequencing and Illumina, these authors found that the 

microbiomes of conspecific ticks from the same location had more similar microbes compared to 

ticks collected in different geographic locations, and that greater the distance between them the 

more distinct the microbiomes. These results support the idea that geography might impact the 

composition of tick microbiomes, and that this factor may cause differences among tick 

populations in different locations.  

 

In the same investigation of A. americanum, Clay et al. (2008) found that larval clutches had a 

more diverse microbiome compared to adults. Although age may play a role in diversity, the 

authors state that a higher abundance of Coxiella spp. in adults can cause less represented 

bacterial groups to be harder to detect. A study by Menchaca et al. (2013) looking at the 

microbiome changes due to blood-feeding and age in A. americanum found that Coxiella and 

Bradyhizobiaceae changed in relative abundance from nymph to adult, although they noted that 

the differences between groups could be due to feeding and subsequent starvation rather than age 

alone. These two studies highlight the need to better understand factors that cause changes in tick 

microbiomes, and to elucidate whether a factor is really a combination of several factors.  

An additional factor that would be important to consider is the feeding status of the tick. An 

investigation by Heise et al. (2010), which studied how blood feeding in A. americanum could 

change the microbiome using cloning of vectors containing 16s rRNA sequences, found that 

questing adult ticks collected from both OK and GA showed a higher diversity of bacteria 

following blood feeding.  

 

Potential control methods: Understanding factors that change the structure and composition of 

the microbiome, and the interactions of the microbes within them, would provide a better 

understanding of regional and seasonal tick-borne disease dynamics; and could also provide 

novel methods for tick control. Paratransgenic transformation is a strategy where endosymbionts 

within the host are genetically altered. For blood-feeding arthropods, this could be used to create 

symbiotic bacteria that produce compounds that inhibit infection by pathogenic microbes. 

Durvasula et al. (1997) eliminated or greatly reduced Trypanosoma cruzi infection in the kissing 

bug (Rhodnius prolixus) through transformation of the symbiont Rhodococcus rhodnii to 

produce the antibacterial compound Cecropin A. Additionally, modulating the structure of the 

microbiome might alter the vectorial capacity of ticks by either eliminating microbes that 

facilitate pathogen invasion or by increasing the presence of microbes that competitively exclude 

pathogens. An example could be infecting ticks with non-pathogenic Rickettsia, as members of 

this genus have been found to competitively exclude each other (Macaluso et al. 2002). Simple 

elimination of endosymbionts is another possible strategy. This has been demonstrated by 

reducing reproductive fitness of A. americanum females and survival of offspring using 

antibiotics to eliminate a Coxiella symbiont (Zhong et al. 2007). Control methods using these 

techniques could be environmentally safe and have potentially no impacts on non- target 

organisms compared to acaricides, since targeted endosymbionts would be host specific.  
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Justification to Committee 

 

The beef cattle industry in Tennessee is currently at risk from endemic tick-borne threats 

including direct feeding damage and morbidity and mortality caused by transmission of A. 

marginale. Control of these pests is complicated by several factors, including a general lack of 

awareness among cattle industry stake holders of the threats that ticks pose to cattle health.  This 

lack of awareness means there is no push for research into ticks, creating a relative dearth of 

information regarding the basic ecology and phenology of these pests in Tennessee. This feed-

back loop of non-information causes several cascading issues including producers misattributing 

biting damage from ticks to flies, further fueling the feed-back loop and leaving producers 

vulnerable to unseen losses. Producers that are aware of ticks and tick-borne pathogens face 

challenges primarily caused by decreasing numbers of acaricidal compounds available to them to 

control these pests.  The reasons behind this decline are numerous, and include increased federal 

regulation, slow creation of new acaricides, loss of effectiveness of existing acaricides, and 

increasing public concern over pesticide use in agriculture. In addition to the endemic threats to 

the beef cattle industry, invasive ticks or pathogens could devastate the existing industry and due 

to the general attitude of producers to tick threats it is likely that a response to an invasive threat 

would lag behind initial establishment. Ultimately, eradication efforts would be made nearly 

impossible.  

 

Current needs: Due to the challenges that endemic and invasive tick threats represent to the 

beef cattle industry in Tennessee, it is crucial that research must be conducted to determine 

which species are pests of cattle and to elucidate basic characteristics of the ecology and 

phenology to tick pests of cattle. Specifically, understanding of the regional and seasonal 

variation in tick populations could assist in creating ‘risk assessments’ that can provide 

producers with knowledge of when and where ticks are likely to infest cattle. Additionally, this 

information could act as a guideline for producers when deciding to enact control measures 

based on the location of the animal and the time of year. Within an IPM strategy, this would 

reduce acaricide use resulting in a decreased probability of ticks to develop resistance and an 

increased longevity of existing chemical control options.  Concurrent investigation into new 

control methods would increase diversity of control methods available to producers, and increase 

the flexibility of the IPM strategy overall. Answers to questions regarding the composition and 

structure of the tick microbiome could open the door to a wide range of control techniques that 

would help cattle producers in Tennessee manage current tick issues, and potentially control 

invasive ticks and tick-borne pathogens that pose a threat to the Tennessee cattle industry.  

Lastly, information that could help to prepare the cattle industry for invasive ticks and pathogens 

will be an important tool for creating a collaborative network of industry stake holders necessary 

to enact effective eradication efforts and serve to defend cattle health and the state’s economic 

interests. This includes not only investigations into which sources our best for monitoring for 

invasive ticks, but pathogens as well. 
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Hypothesis 

 

This research project aims to tackle these challenges with the following objectives. 

 

Objective 1- tick diversity survey: This study will test the hypothesis that there are multiple 

tick species that parasitize beef cattle in Tennessee, that tick activity will vary both seasonally 

and regionally, and that not all sources of collection will be suitable for monitoring for invasive 

tick species.    

 

This objective will be accomplished using three primary sub-objectives: 

1.) Identify the species that are commonly found parasitizing cattle  

2.)  Elucidate the seasonal and geographic variation in these tick populations  

3.)  Identify the most efficient means to achieve a state-wide collection program.  

 

Objective 2- microbial community analysis of A. maculatum: This portion of the study will 

test the hypothesis that the microbial communities of Amblyomma maculatum will have a 

consistent presence of certain microbe taxa and will vary by factors such as region of collection, 

feeding status, and life-stage.  

 

This objective will be accomplished using 2 primary sub-objectives: 

1.) Determine the core microbiome of A. maculatum  

2.) Investigate factors that lead to changes in the microbial community structure  
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Appendix A 

 

Table 1.1 Host preference and seasonal dynamics of common ticks in TN.  

 
 Information presented in this table was compiled from the following sources: (Bishopp and 

Trembley 1945, Durden and Kollars Jr 1992, Kollars et al. 1999, Kollars et al. 2000, Cohen et al. 

2010, Teel et al. 2010).  It is important to note that seasonal variation will differ geographically 

and as such these reported activities may not correspond to the seasonal dynamics of ticks in 

Tennessee. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Life Stage Hosts Peak Activity 

Amblyomma 

americanum 

Larvae Birds, large mammals Year round, except in 

midwinter 

Nymph Birds, large mammals Year round, except in 

midwinter 

Adult Large mammals Year round, except in 

midwinter 

Dermacentor 

variabilis 

Larvae Small mammals Spring 

Nymph Small mammals Spring 

Adult Dogs, other medium 

sized mammals 

Spring 

Amblyomma 

maculatum 

Larvae Birds, small mammals Year round, except in winter 

Nymph Birds, small mammals Year round, except in winter 

Adult Large mammals Late summer, early fall 

Ixodes 

 scapularis 

Larvae Birds, reptiles, mammals Summer 

Nymph Birds, lizards Summer 

Adult Medium and large 

mammals 

Spring and fall 
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Chapter 2: Tick Diversity Survey 
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Abstract 

 

Ticks impact cattle health through attachment and transmission of pathogens. Bovine 

Anaplasmosis is currently a threat to Tennessee cattle, with Heartwater and Bovine Babesiosis 

poised to devastate the U.S. cattle industry. Research objectives were to investigate seasonal and 

regional impacts on infestation prevalence and burden of ticks on cattle and identify sources for 

invasive tick monitoring. 25% of the total herd size (or 10 animals) were sampled at 3 University 

of Tennessee Research and Education Centers (RECs), 6 livestock auctions, and 9 extension 

agents at 21 producer locations. SAS (9.4) was used to determine the effect of season, region, 

and collection source. SatScanTM (9.4.2) was used to detect high and low clusters of infestation. 

740 ticks were captured from 1817 sampled cattle, including 573 Amblyomma americanum 

(77.4%), 125 Amblyomma maculatum (16.9%), 35 Dermacentor variabilis (4.7%), and 3 Ixodes 

scapularis (0.4%). Western and middle Tennessee were significantly different in infestation 

prevalence and burden of A. maculatum. For A. maculatum and the species total, infestation 

prevalence and burden were greater in spring than fall. Auctions and RECs had the greatest 

infestation prevalence of A. maculatum, and the greatest burden of A. maculatum and D. 

variabilis. High risk locations clustered in western and middle Tennessee, with low risk locations 

in middle and eastern Tennessee. Results from this study provide knowledge necessary to initiate 

control measures, including seasonal phenology and regional distribution of current tick threats. 

The RECs and livestock auctions should be used for monitoring invasive threats to Tennessee, 

and other southeastern states. 
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Introduction 

 

Ticks are blood – feeding arthropods of significance to both human and animal health because 

they can damage a host via multiple mechanisms. Tick attachment can cause direct damage 

through dermatitis, allergies, introduction of toxic salivary compounds, and providing entry 

points for secondary infections (Jongejan and Uilenberg 2004). Additionally, ticks can indirectly 

damage their host via the transmission of pathogenic microbes.  Ticks and tick- borne diseases 

are a serious threat to the cattle industry in the United States (U.S.). The U.S beef cattle industry 

significantly contributes to the country’s economy, with a retail value estimated at $105 billion 

USDs in 2015 (USDA-ERS 2017). In Tennessee, cow - calf production for beef cattle is one of 

the state’s top agricultural commodities at $735.5 million USDs (2012) (Vilsack and Clark 

2014). The cattle industry’s economic success is dependent upon proper management of factors 

that impact cattle production. Cattle heath is of major importance, with annual losses from 

health-related issues estimated at $20 - 25 million USDs in Tennessee (Neel 2013). Although 

ticks likely contribute to health losses in Tennessee, many producers are unconcerned or unaware 

of the consequences these pests can have on cattle health. This pervasive mindset makes the 

cattle industry vulnerable to endemic ticks and pathogens and creates conditions that allow for 

invasion of new threats.   

 

Bovine Anaplasmosis (BA) is a serious disease of cattle that occurs in many parts of the U.S. 

(McCallon 1973), including Tennessee (Merriman et al. 1966, Whitlock et al. 2014).  For 

California beef cattle, the estimated cost of direct losses from BA infection combined with 

treatment and control costs is $1.48 million USDs (Goodger et al. 1979). The etiological agent, 

Anaplasma marginale, can be transmitted mechanically by biting arthropods or fomites 

contaminated by blood, and biologically by Dermacentor ticks (Dikmans 1950, Kocan et al. 

2004)). Dermacentor variabilis and Dermacentor albipictus have been documented in Tennessee 

(Durden and Kollars Jr 1992, Reeves et al. 2007, Cohen et al. 2010), but only D. variabilis has 

been shown to be a pest of cattle (Pompo et al. 2016). While BA infected ticks were not captured 

from cattle-associated ticks previously (Pompo et al. 2016), the pathogen is found in Tennessee 

cattle (Whitlock et al. 2014); Therefore, this tick-pathogen complex represents an issue that 

producers must monitor for.  

 

Two tick and pathogen complexes are primed to invade the U.S. and pose a significant risk to the 

cattle industry. In Mexico, Rhipicephalus microplus and Rhipicephalus annulatus are vectors of 

Babesia bigemina and B. bovis, the pathogens that cause Bovine Babesiosis (BB). Unfortunately, 

factors including resistance of R. microplus to acaricides used to treat cattle moving across the 

border (Li et al. 2003,2004, Miller et al. 2005) and movement of suitable alternate wildlife hosts 

such as white-tailed deer (Odocoileus virginianus) (Busch et al. 2014) have made breaks in the 

quarantined zone a grim reality. In the Caribbean, the Tropical Bont Tick (Amblyomma 

variegatum) is a vector of Ehrlichia ruminantium, the agent of Heartwater (HW). The invasion 

of this tick is made possible via imported pets and livestock (Deem 1998), and movement of 

cattle egrets (Bulbulcus ibis) which serve as suitable hosts for immature bont ticks (Burridge et 

al. 1992). While BB and HW are not currently found in the U.S., they are of concern to the cattle 

industry because of the high estimated death loss (≥70%) (Wagner et al. 2002) and potential 

economic impact (Dietrich and Adams 2000) following introduction. 
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To prepare for these impending threats, it is vital that the cattle industry collect key information 

on the biology and activity of current tick threats to mitigate economic losses. Additionally, 

investigating monitoring techniques will create detection methods to prevent establishment and 

spread of invasive ticks. To protect the cattle industry from ticks we are testing the overarching 

hypothesis that the infestation prevalence and burden of ticks will vary by season and region and 

collection source. To test this hypothesis our objectives were to characterize the tick infestation 

prevalence and burdens to Tennessee cattle and determine the best strategies for monitoring for 

invasive ticks in Tennessee. 

 

Materials & Methods 

 

Collection sources: We used three collection sources to sample from a large number of cattle, to 

collect a variety of ticks, and to capture an accurate representation of tick species on cattle. In 

total, 30 collection locations used for this study consisting of three University of Tennessee (UT) 

Research and Education Centers, six livestock auctions, and nine extension agents collaborating 

with a total of 21 cattle producers (Fig 1). Additionally, twelve United States Department of 

Agriculture (USDA) approved livestock slaughter houses were contacted, of which zero were 

willing to participate in this study. Before sampling, we obtained approval to collect ticks from 

the cattle sources via signed documentation and from the UT Institutional Animal Care and Use 

Committee (IACUC) committee (IACUC #2192). 

 

The UT Research and Education Centers (RECS) carry out field studies for the benefit of 

producers in the agricultural and natural resource industries. The RECS sites in this study were 

used previously in a project investigating tick-cattle associations in Tennessee (Pompo et al. 

2016). Ames Plantation (~7,446 hectares) has approximately 200 head of Angus beef cattle and 

is located in Western Tennessee (35.114394, -89.211781) within the Mississippi Valley Loess 

Plains ecoregion (Griffith et al. 1997). The Middle Tennessee Research and Education Center 

(~511 hectares) has approximately 140 cows consisting of angus, charlois and black baldy 

[hereford x angus]) and is located in central Tennessee (35.718806, -86.965131) within the 

Interior Plateau ecoregion, (Griffith 1997). The Plateau Research and Education Center (~850 

hectares) has approximately 200 head of Angus beef cattle and is located in Eastern Tennessee 

(36.105349, -85.132090) within the Southwestern Appalachians ecoregion (Griffith 1997).  

 

UT employs approximately 400 extension agents working in 95 offices located in every county 

in Tennessee. Their objective is to serve as the primary means of disseminating academic 

research to the public in an effort to improve quality of life through education.  These agents 

work closely with livestock producers, and were considered an asset for this project. Agents were 

contacted via email and/or phone to determine interest in participating in the study (n = 50 

agents). Twenty-six agents (52%) were willing to participate and subsequently sent a training 

video demonstrating the sampling methods employed for this study (Theuret and Trout Fryxell 

2016). Agents were sent collection kits with the following items: Thermo Scientific™ Nunc 

™15ml tubes (ThermoFisher, Waltham MA) filled with approximately 7.5 ml of 80% ethanol, 

data sheets, and producer participation agreement forms. Additionally, agents were sent 

instructions and labels for shipping samples in ethanol. These were approved by the UT Institute 

of Agriculture’s biological safety officer. Of the agents initially interested, nine (34.6% of 

interested investigators) reported collection data.  
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In Tennessee, there are 47 facilities used for livestock auctions. Of these, 27 (57%) were 

contacted, with 6 (22% of contacted) willing to participate.  These included three locations in the 

Interior Plateau (Tradition Livestock Services [35.895403, -86.38175], Warren County Livestock 

[35.709283, -85.791516]) and Dickson County Livestock Auction [36.023889, -87.341512]), 

two locations in the Mississippi Plains (Somerville Livestock Auctions [35.289827, -89.36078], 

and Scott’s Hill Livestock Auction [35.51478, -88.238319]), and one location in the Ridge and 

Valley (East Tennessee Livestock Center [35.633839, -84.437595]). These locations held weekly 

auctions of cattle and calves, in addition to other livestock including pigs, and goats.  

 

Tick collections from cattle hosts: Ticks were collected directly from cattle run through a chute 

to maximize the efficiency of collections, and protect the safety of both the investigator and the 

animal. The greater of 25% of the total herd size or ten animals were sampled to capture ticks 

and avoid reducing the efficiency of the husbandry practices of the producer. For example, herds 

of less than 40 cattle sampled 10 animals, whereas a herd of 45 cattle sampled 12 cattle (11.25 

rounded up). Collections were performed based on the schedule of the respective producer / herd 

manager, and were typically done concurrently with standard husbandry practices: vaccinations, 

pregnancy checks, ear tag insertions, and aging. Cattle were scratched (investigator used hands 

for tactile detection) and visually checked, with special attention to the ears, head, neck, tail, and 

underside of the tail, as these sites have been shown to be common attachment sites of ticks 

(Gladney et al. 1974, Barnard 1981, Barnard et al. 1982, Bloemer et al. 1988) and are safe for the 

inspector. Animals were sampled for a maximum of five minutes to minimize animal stress. 

Collected ticks were placed into a vial containing 80% ethanol, with one vial used per animal.  

Any ticks found on cattle that were not part of the sampled group were also collected and 

considered ‘opportunistically collected’. At all collection sites, any cattle that posed a threat to 

the safety of themselves or the investigator were not sampled. Information about each animal 

was recorded, including the ear tag number, breed, and age.   

 

Tick identification: All collected ticks were identified to species, life-stage, and sex using 

dichotomous keys (Sonenshine 1979). Following identification, ticks were placed into new 

labeled vials of 80% ethanol for storage. Two variables used for statistical analysis were 

infestation prevalence (defined as the percentage of cattle within a sampled group that were 

infested with ticks) and tick burden (the mean number of ticks found on infested animals). No 

opportunistically collected ticks were used for statistical analyses. These variables along with 

traditional descriptive variables (e.g., mean no. ticks) were calculated for each species and the 

total.  Data were visualized using ArcGIS (v 10.3.1) (ESRI 2011) to map tick collection sites, 

infestation prevalence, and tick burden. For all tests conducted, Ixodes scapularis collections 

were excluded from analyses because this species was rarely captured. We also investigated co-

feeding on an animal (when two species occur together on the same host). Co-feeding rates were 

compared using the Cole’s index (C7) of ecological interaction (Cole 1949). Positive values 

indicate a mutualistic relationship, negative values indicate competition, and numbers near zero 

indicate no association (neutral). Analyses were conducted on the spring and summer cattle 

collections using a Chi-square analysis to determine significance of association (α = 0.05). 

 

Seasonal and regional effect: To determine seasonal and regional effects of tick prevalence and 

tick burden of cattle, we used a PROC GLM in SAS software 9.4 (Cary Institute, NC). This suite 

of tests included a MANOVA for multiple comparisons, ANOVA for species comparisons, and 
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LSM separation adjusted for multiple comparisons using Tukey-Kramer. Response variable data 

were ranked transformed to satisfy the assumption of normality and equal variance required by 

the model. Seasons were defined by calendar month as Spring (Mar, Apr, May), Summer (Jun, 

Jul, Aug), and Fall (Sep, Oct, Nov), for ease of interpretation by cattle producers.  This included 

collections from 3 RECS centers (n = 798 animals; 266 ± 36.1 per season) at least once during 

these periods. Regions were defined according to the regions of the University of Tennessee 

Extension Service (western, middle, and eastern), and included collections from 3 RECS centers 

(n = 604 animals; 201.33 ± 72.47), 6 livestock auctions (n =419 animals; 69.83 ± 38.87), and 9 

Extension agents at 21 collection sites (n =374; 17.81 ± 2.34). For this analysis, only spring and 

summer collections were used; fall and winter collections were excluded because only 4 ticks 

were collected in fall and winter combined. Significance for the PROC GLM was determined at 

α = 0.05. Results are displayed in Figure 3, 4 (Appendix B).  

 

Spatial analysis was performed using SatScanTM (v 9.4.2) (Kulldorff 2015) to detect both high 

and low rates of clustering of infestation. The parameters of this analysis require the size of the 

population at risk, the number of cases, and geographic coordinates. For this, the number of 

cattle sampled at a location was used as the population, with the number of cattle infested as the 

cases. A circular window with a radius equal to 50% of the cattle population size was used with 

no geographical overlap between windows. A Discrete Poisson model (Kulldorff 1997) was 

chosen because it is not sensitive to changing population sizes, a common occurrence in this 

study resulting from differences in the number of cattle sampled. Relative risk values are 

reported, with values < 1 indicating decreased risk compared to baseline and values > 1 

indicating increased risk. For both analyses, the alpha level was α = 0.05. Fall and winter 

collections were again excluded from analysis. Clustering results were displayed in ArcGIS 

(v10.3.1) (ESRI 2011) (Figure 5, Appendix B).  

 

Sites for invasive monitoring: To determine which collection method (RECS, EXT, and/or 

auctions) would be best for future tick monitoring opportunities we compared infestation 

prevalence and tick burden from collections in the peak collection periods (spring and summer). 

This was used to make comparisons between collection sources due to greater temporal overlap 

in collections. Likewise, when investigating sex and age of animals as risk factors for tick 

parasitism animals were chosen from among regions that were not statistically different and from 

spring and summer.  Significance for the PROC GLM was determined at α = 0.05. 

 

Results 

 

Tick collections: A total of 740 ticks were collected from cattle consisting of four species (Table 

1, Appendix B). A majority (77.2%) of the collection were Amblyomma americanum (573 

specimens) of which 61.6% were females, 31.4% were males, and 6.6% were nymphs. 

Amblyomma maculatum comprised 16.8% of the collection (125 specimens) of which 84.8% 

were males and 15.2% were females. D. variabilis comprised 4.7% of the collection (35 

specimens) of which 60.0% were female and 40.0% were male. The remaining 1.2% were 5 I. 

scapularis (adults) and 4 specimens missing key morphological features that made them 

unidentifiable using dichotomous keys. Due to our wide collection, some specimens were 

opportunistically collected and they included 53 A. maculatum (34 females and 19 males) and 35 

A. americanum (24 females and 11 males); as mentioned, these were not used in any analyses. 
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The species total mean infestation prevalence was 17.8 % ± 3.2%, and the mean burden was 1.2 

± 0.2. Mean infestation prevalence was 14.6 % ± 3%, and mean burden was 1.0 ± 0.2. Mean 

infestation prevalence among from all sampling events was 2.5 % ± 1.3%, and mean burden was 

0.3 ± 0.1. Mean infestation prevalence among the total sampled cattle was 1.6 % ± 0.6%, and 

mean burden was 0.29 ± 0.1. 

 

Most cattle sampled during spring and summer were not infested with ticks (1094 cattle;78.3%) 

and if an animal was infested with ticks it was typically infested with only one species (285 

cattle; 94.1%). Consequently, we rarely identified two different tick species co-feeding 

(simultaneously feeding) on the same animal (Table 2, Appendix B). Co-feeding occurred on 22 

different animals (1.6% of sampled animals) and we never observed three different species on 

the same host. Cole’s index of association for A. americanum and D. variabilis was 0.299 ± 

0.079 (χ2 = 14.09; P = 0.0002) indicating a significantly positive interspecific relationship. 

Whereas, Cole’s index of association for A. americanum and A. maculatum was -0.437 ± 0.335 

(χ2 = 1.695; P = 0.193) and for A. maculatum and D. variabilis was 0.03946 ± 0.0329 (χ2 = 

1.242; P = 0.2650) indicating no significant relationship between the different co-feeding 

species. 

 

Knowing these tick species mate on their hosts, we also compared intraspecific interactions. 

Cole’s index of association for A. americanum adults and nymphs was 0.686 ± 0.083 (χ2 = 69.17; 

P < 0.0001) and for males and females it was 0.351 ± 0.034 (χ2 = 105.54; P < 0.0001) indicating 

all nymph, male, and female A. americanum were significantly associated together on cattle. 

This was also significant for A. maculatum males and females; their Cole’s index of association 

was 0.606 ± 0.044 and positively associated with one another (χ2 = 187.21; P < 0.0001).  

 

Effects of season and region: Infestation prevalence (F = 9.54; df = 2; P = 0.0021) and burden 

(F = 11.16; df = 2; P = 0.0011) were different between fall and spring collections (P < 0.005). 

Both infestation prevalence (F = 0.16; df = 2; P = 0.8488) and burden (F = 0.30; df = 2; P = 

0.7408) were found to be not significant between regions of Tennessee. 1 cluster encompassing 9 

locations in Middle and Western Tennessee was significant for high rates of infestation (P < 

0.0001) with a relative risk of 3.01. There were also 2 clusters encompassing 11 locations in 

middle and eastern, and 1 in western, Tennessee were significant for low rates of infestation (P < 

0.001) with relative risk ranging from 0.19 – 0. Locations for both high and low rate clusters 

comprised all three collection source types (RECS, auctions, extension collections).  

 

Amblyomma americanum: Neither infestation prevalence (F = 1.59; df = 2; P = 0.2361) or 

burden (F = 1.96; df = 2; P = 0.1756) were significantly impacted by season. The same pattern 

observed in the total category was seen in the infestation prevalence (F = 0.13; df = 2; P = 

0.8811) and burden (F = 0.85; df = 2; P = 0.4375) in that they were not significant between 

regions. Further spatial analysis revealed 1 high rate cluster comprised of 4 locations in Middle 

Tennessee that had significant clusters of infestation for A. americanum (P < 0.001) with a 

relative risk of 3.82. This cluster included an auction and several extension collections. 4 

significant low rate clusters (P < 0.05) with relative risk ranging from 0.092 to 0 were detected in 

neighboring locations comprised of RECS and extension locations.   
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Amblyomma maculatum: Season had a significant effect on infestation prevalence (F = 6.82; df = 

2; P = 0.0078) and burden (F = 6.68; df = 2; P = 0.0084), with fall lower than spring (P < 0.05). 

Both infestation prevalence (F = 4.83; df = 2; P = 0.0161) and burden (F = 4.53; df = 2; P = 

0.0201) were shown to be significant between regions. Least squared means demonstrated that 

western Tennessee was significantly different from middle Tennessee in both infestation 

prevalence (P = 0.0176) and burden (P = 0.0222) and both of these regions were not 

significantly different from eastern Tennessee for either variable. Cluster analysis showed 1 

auction and 1 RECS along the border of middle and western Tennessee were a cluster of high 

infestation rates (P = 1.0 x10-17) with a relative risk of 24.85. Several locations in middle and 

eastern Tennessee formed a significant cluster of low rates of infestation (P = 7.6 x10-11) with a 

relative risk of 0, and were comprised of all three collection source types.  

 

Dermacentor variabilis: Season did not significantly impact infestation prevalence (F = 3.54; df 

=2; P = 0.0550) or burden (F = 3.55; df = 2; P = 0.0546). Similar to the patterns seen in total and 

A. americanum, infestation prevalence (F = 2.10; df = 2; P = 0.1416) and burden (F = 2.68; df = 

2; P = 0.0868) were not significant between regions. 1 location in western Tennessee was shown 

to be a significant high cluster for D. variabilis (P = 0.039) that had a relative risk of 6.25.  There 

were no locations that were considered significant low clusters for D. variabilis. 

 

Sites for invasive monitoring: We attempted to compare phenotypic traits of the animals 

including sex and age, but all comparisons were insignificant (P > 0.05). There was a significant 

effect due to site type (F = 6.68; df = 16; P < 0.0001), which was driven by differences observed 

in A. maculatum and Dermacentor variabilis. The infestation prevalence (F = 18.33; df = 2; P < 

0.0001) and burden (F =18.58; df = 2; P < 0.0001) of A. maculatum were greatest at the auctions 

and RECS (P < 0.001). For D. variabilis, burden (F = 11.13; df = 2; P = 0.0003) was 

significantly greater the auctions and RECS compared to extension collections (P < 0.05).  

 

Discussion 

 

The results of this study found that A. americanum, A. maculatum, and D. variabilis were 

primary pests of cattle, confirming findings by Pompo et al. (2016). One difference in these two 

studies is that in this survey I. scapularis was also identified as a parasite of cattle and was 

completely absent from the previous study. Adult I. scapularis have been previously documented 

as a pest of cattle with a seasonal activity ranging from October through March / April (Bishopp 

and Trembley 1945, Harris 1959, Drummond 1967, Barnard 1981). Our results corroborate these 

findings, in that I. scapularis were captured in low numbers (n = 5) in winter and early spring. 

Therefore, the absence of I. scapularis from Pompo et al. (2016) is likely due to the summer 

sampling employed in their survey which would have missed the window of activity for adult I. 

scapularis.  

 

The most common tick species collected was A. americanum. This species is abundant, captured 

at 23 sites and all collection types, has high infestation prevalence and tick burden throughout the 

spring and summer and has a wide geographic range. These characteristics make A. americanum 

a primary pest of cattle in Tennessee. Previously, 15 female A. americanum per animal was the 

injury threshold for pre-weaned beef cattle (Barnard 1985). None of the animals sampled in this 

study had more than the threshold (maximum was 11 female A. americanum per single animal) 
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indicating these tick populations were not at damaging levels; however, we could only sample 

from a limited portion of the animal’s body surface unlike Barnard (1985) who performed whole 

body inspections. Given this consideration, it is possible that infested herds had more ticks than 

we could capture, and thus producers in Tennessee may already be suffering economic losses 

due to A. americanum feeding damage.  

 

Conversely, D. variabilis were collected from only 10 locations, both infestation prevalence and 

burden were low and not impacted by either season or region and had little geographic 

clustering, and were collected at all site types and regions. Previous survey results found D. 

variabilis in 40 of 49 sampled counties in Tennessee, suggesting that it has a wide geographic 

range (Cohen et al. 2010). Knowledge of the geographic range of this pest is important because 

D. variabilis is a biological vector of A. marginale, and its distribution may indicate geographic 

range of this pathogen. A high proportion of Tennessee beef cattle (56%) tested between 2002 

and 2012 were shown to be infected with A. marginale, with 10.53% of samples positive in 2013 

(Whitlock et al. 2014). Since this species is widespread, but has a low infestation prevalence and 

low tick burden, this may explain Tennessee’s relatively low BA rates. Furthermore, knowledge 

of the phenology and regional distribution of D. variabilis is important for veterinarians to 

prescribe medication under new regulations outlined by the veterinary feed directive (VFD). The 

VFD dictates that the supervision of a veterinarian who has a veterinarian client patient 

relationship (VCPR) with the producer is necessary to administer medicated feeds to herds, with 

medications only given to treat or prevent disease; the latter case should only occur if the 

veterinarian is able to determine that contracting an illness is likely (FDA 2012, 2013, 2015). 

Future studies should determine the infection rates of A. marginale in D. variabilis to elucidate 

the risk to cattle and to assist veterinarians in making informed decisions about prescription of 

feed through antibiotics within the boundaries of the VFD.  

 

A. maculatum had a restricted distribution to middle Tennessee and was collected from six sites; 

none in eastern Tennessee. Originally distributed along the Gulf Coast region of the United 

States, populations of A. maculatum have expanded via cattle movement into Oklahoma and 

Kansas (Teel et al. 2010) with only occasional collections of A. maculatum in western Tennessee 

(Bishopp & Trembly 1945, Durden & Kollars 1992). This tick has also been sporadically 

collected within the middle Tennessee region. A single A. maculatum was captured in Marhsall 

County Tennessee (Pompo et al. 2016), while a single tick from both Perry and Decatur Counties 

was found during a statewide tick survey (Cohen et al. 2010). In this study, we captured 160 

adult A. maculatum in Maury County, which is within 100 miles of Perry, Decatur, and Marshall 

Counties. Previous collections of this tick within Tennessee were attributed to accidental 

introductions either through livestock importation (Bishopp & Trembly 1945) or movement of 

bird hosts (Durden & Kollars 1992). Our results, combined with recent findings by other authors, 

suggest that the range of A. maculatum is continuously expanding in western and middle 

Tennessee.  

 

Given its recent expansion into the state, A. maculatum should be considered a ‘model’ invasive 

tick species. Results from our investigation into which sources would be best for invasive 

monitoring revealed that cattle infested with A. maculatum had high prevalence and burden at the 

RECS and auction collections. Within Tennessee the RECS and auctions should continue to be 

used as monitoring resources, with the RECS acting as ‘sentinels’ that can detect established 
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populations of invasive species and the auctions as a checkpoint for potential invasions. 

Livestock auctions should be the primary means of monitoring for invasive ticks.  First, the 

number of new cattle moving into these locations is greater compared to the RECS, potentially 

increasing the likelihood of capturing invasive ticks. Especially useful would be auctions located 

at the borders of Tennessee, which would have a greater chance of sampling imported cattle 

crossing state lines. Second, the number of auction locations in the state is far greater (40+) 

compared to the number of RECS (7), which would allow for greater regional spread in 

collections. Lastly, although the RECS willingly cooperated with sampling efforts in this study, 

collections were scheduled to coincide with other husbandry practices (ear tagging, vaccinations, 

pregnancy checking, etc.) which are performed a limited number of times annually. The 

auctions, if they offer pregnancy checking at their facilities, have more regular inspections of 

cattle with many of the locations in this study conducting auctions once a week. This could 

therefore offer a weekly monitoring schedule for tick activity. These factors combined result in 

an effective means for monitoring for invasive ticks, and offers the opportunity for increased 

resolution of geographic tick distribution and seasonal phenology in future surveys.  

 

Interestingly, A. americanum and D. variabilis were found co-feeding on 1.0% (n = 14) of 

sampled animals and have a significant positive co-infestation relationship, meaning that when 

D. variabilis is found on a host it is likely that A. americanum will also be present. There are 

several factors that can explain this relationship, including similar host use, overlapping 

geographic distribution, and matching temporal patterns of activity. Indeed, in a survey of ticks 

in Tennessee using drag and mammal trapping Cohen et al. (2010) noted that D. variabilis and A. 

americanum were common and collected across multiple locations in Tennessee. Additionally, 

these species have been known to parasitize cattle in Tennessee (Pompo et al. (2016). Lastly, 

several publications have shown that the seasonal activity of A. americanum (Davidson et al. 

1994, Jackson et al. 1996) and D. variabilis (Burg 2001) occurs primarily in spring with adults 

disappearing by August. The finding that these two species co-infest cattle is important for two 

reasons. The first is the potential for D. variabilis to act as an indicator of infestation by A. 

americanum, which may be useful for determining if the economic threshold has been surpassed, 

although more research would be required to elucidate the relationship between D. variabilis and 

A. americanum densities on cattle. Second, although A. americanum is not considered a 

biological vector of A. marginale, it could nonetheless play an important role in pathogen 

transmission by suppressing the host immune response (Wikel and Whelen 1986, Wikel et al. 

1994, Wikel 1999), allowing for infection via D. variabilis feeding.  

 

Importantly, several pathogens and invasive ticks are threatening the US cattle industry. As 

mentioned, the distributions of A. americanum and D. variabilis may serve as predictors for 

Anaplasma marginale distributions and A. maculatum’s distribution may serve as a predictor for 

E. ruminantium distribution. Several southern US states could be invaded by multiple threats, 

including the Texas Cattle fever ticks (R. microplus and R. annulatus) that transmit the agents of 

Texas Cattle fever (Babesia bovis and B. bigemina) and the Bont ticks (A. variegatum and A. 

hebreum) which can both transmit the agent of Heartwater (E. ruminantium). Future work should 

expand the surveillance strategy from Tennessee into other states at risk from these invasive 

threats to protect the U.S. cattle industry as a whole.  This multi-state collaboration would be 

beneficial in that invaded states could serve as an early detection system for yet impacted states.  

Additionally, this strategy would make concerted eradication and quarantine efforts possible. 
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Appendix B 

 

Table 2.1 Tick species parasitizing cattle in Tennessee.  

 

Species Life-

stage 

No. 

Ticks 

No. 

Animals 

Mean  

(± SEM) 

Infestation 

Prevalence 

(%) 

Tick 

Burden 

Amblyomma 

americanum 

Nymph 40 32 0.02 ± 0.004 1.76 1.25 

Male 180 109 0.01 ± 0.01 5.99 1.65 

Female 353 185 0.19 ± 0.02 10.18 1.91 

 Total 573 252 0.32 ± 0.03 13.87 2.27 

Amblyomma 

maculatum 

Nymph 0 0 0 0 0 

Male 106 35 0.06 ± 0.01 1.93 3.03 

Female 19 13 0.01 ± 0.003 0.72 1.46 

 Total 125 40 0.07 ± 0.02 2.20 3.13 

Dermacentor 

variabilis 

Nymph 0 0 0 0 0 

Male 14 14 0.01 ± 0.002 0.77 1 

Female 21 21 0.01 ± 0.002 1.16 1 

 Total 35 33 0.02 ±0.003 1.82 1.06 

 
 Amblyomma americanum, Amblyomma maculatum, and Dermacentor variabilis were found 

parasitizing cattle in Tennessee. Additional specimens collected from sampled cattle include 3 

Ixodes scapularis and 4 tick specimens (0.5%) missing key morphological features which made 

them unidentifiable using dichotomous keys. 
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Table 2.2 Co-feeding relationships among tick species.  

 

Dominant 

Species 

Co-feeding 

Species 

Number of Cattle 

Cole’s Index 

(C7 ± SE) 
Both 

Present 

Only 

Dominant 

Only 

Co-

feeding 

Both 

Absent 

Interspecific Competition 

Amblyomma 

americanum 

Amblyomma 

maculatum 
4 244 36 1113 

-0.437 

± 0.3350 

(P = 0.1929) 

Amblyomma 

americanum 

Dermacentor 

variabilis 
14 234 19 1130 

0.300 

± 0.0799 

(P = 0.0002) 

Amblyomma 

maculatum 

Dermacentor 

variabilis 
2 38 31 1326 

0.039 

± 0.0329 

(P = 0.2650) 

Intraspecific Competition 

Amblyomma 

americanum 

adults 

Amblyomma 

americanum 

nymphs 

23 225 8 1141 

0.686 

± 0.0825 

(P < 0.0001) 

Amblyomma 

americanum 

females 

Amblyomma 

americanum 

males 

46 130 56 1165 

0.351 

± 0.0341 

(P < 0.0001) 

Amblyomma 

maculatum 

females 

Amblyomma 

maculatum 

males 

8 27 5 1357 

0.606 

± 0.0443 

(P < 0.0001) 

 

Ixodes scapularis was found co-feeding with D. variabilis and A. maculatum. These interactions 

occurred only once each. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

37 
 

Table 2.3 Infestation prevalence.  

 

Variable  

of Interest 

(n = No. cattle) 

Amblyomma 

americanum 

Amblyomma 

maculatum 

Dermacentor 

variabilis 
Overall 

Seasonal Effect 

Spring 

(n = 297) 
6.5 ± 3.9 16.2 ± 10.7 a 2.5 ± 1.2 23.6 ± 10 a 

Summer 

(n = 307) 
9.1 ± 9.1 0.9 ± 0.93 ab 1.9 ± 0.9 10.9 ± 8.5 ab 

Fall 

(n = 194) 
0.0 ± 0.0 0.0 ± 0.0 b 0.0 ± 0.0 0.0 ± 0.0 b 

Statistic 1.59 (0.2361) 6.82 (0.0078) * 3.54 (0.0550) 9.54 (0.0021) * 

Regional Effect 

Western 

(n = 362) 
20.0 ± 4.5 3.9 ± 1.9 a 3.6 ± 1.7 24.9 ± 5.5 

Middle 

(n = 628) 
26.2 ± 7.5 1.2 ± 1.2 b 1.6 ± 1.1 27.4 ± 7.3 

Eastern 

(n = 407) 
22.3 ± 18.9 0.0 ± 0.0 ab 1.1 ± 0.6 23.3 ± 18.4 

Statistic 0.13 (0.8811) 4.83 (0.0161) * 2.10 (0.1416)  0.16 (0.8488) 

Site Effect 

REC 

(n = 604) 
7.7 ± 7.0 9.5 ± 7.4 a 2.0 ± 0.3 17.6 ± 7.5 

EXT 

(n = 374) 
27.4 ± 7.2 0.0 ± 0.0 b 1.9 ± 1.2 27.9 ± 7.2 

Auction 

(n = 419) 
21.9 ± 6.5 3.9 ± 2.20 a 2.6 ± 1.0 25.6 ± 7.1 

Statistic 0.52 (0.5985) 18.3 (<0.0001) * 4.81 (0.0163) * 0.19 (0.8271) 

 

Statistics are reported as the F value and respective P value as F(P). P values that are significant 

are bolded and denoted by (*). Mean values are calculated from raw data and do not reflect rank 

transformed data. Mean values within a column with different lower-case letters are significantly 

different at P < 0.05.  
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Table 2.4 Burden.  

 

Variable  

of Interest 

(n = No. cattle) 

Amblyomma 

americanum 

Amblyomma 

maculatum 

Dermacentor 

variabilis 
Overall 

Seasonal Effect 

Spring 

(n = 297) 
0.6 ± 0.3 1.7 ± 0.7 a 0.6 ± 0.23 2.0 ± 0.64 a 

Summer 

(n = 307) 
0.4 ± 0.4 0.3± 0.3 ab 0.5 ± 0.3 0.9 ± 0.3 ab 

Fall 

(n = 194) 
0.0 ± 0.0 0.0 ± 0.0 b 0.0 ± 0.0 0.0 ± 0.0 b 

Statistic 1.96 (0.1756) 6.68 (0.0084) * 3.55 (0.0546) 11.16 (0.0011) * 

Regional Effect 

Western 

(n = 362) 
2.1 ± 0.8 0.6 ± 0.2 a 0.6 ± 0.2 1.8 ± 0.5 

Middle 

(n = 628) 
1.5 ± 0.4 0.3 ± 0.2 b 0.2 ± 0.1 1.7 ± 0.4 

Eastern 

(n = 407) 
1.5 ± 0.2 0.0 ± 0.0 ab 0.7 ± 0.4 1.5 ± 0.2 

Statistic 0.85 (0.4375) 4.83 (0.0161) * 2.68 (0.0868) 0.30 (0.7408) 

Site Effect 

REC 

(n = 604) 
0.9 ± 0.5 1.8 ± 1.3 a 1.1 ± 0.1 a 2.4 ± 1.0 

EXT 

(n = 374) 
1.5 ± 0.4 0.0 ± 0.0 b 0.1 ± 0.1 b 1.5 ± 0.4 

Auction 

(n = 419) 
2.4 ± 0.8 0.7 ± 0.2 a 0.7 ± 0.2 a 2.1 ± 0.6 

Statistic 1.62 (0.2165) 18.58 (<0.0001)* 11.13 (0.0003)* 1.81 (0.1829) 

 

Statistics are reported as the F value and respective P value as F(P). P values that are significant 

are bolded and denoted by (*). Mean values are calculated from raw data and do not reflect rank 

transformed data. Mean values within a column with different lower-case letters are significantly 

different at P < 0.05.   
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Figure 2.1 Collection sources across Tennessee 2015 – 2016.  
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Figure 2.2 Infestation prevalence of cattle infested with ticks in Tennessee. Values shown 

are calculated from raw data and do not represent transformed data. Infestation prevalence 

varied by the species total (a) and each tick species; Amblyomma americanum (b), 

Amblyomma maculatum (c), and Dermacentor variabilis (d). Region was only significant for 

A. maculatum infestation prevalence, with regions with different upper-case letters being 

significantly different at P < 0.05.  
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Figure 2.3 Burden of ticks on cattle in Tennessee. Values shown are calculated from raw 

data and do not represent transformed data. Burden varied by the species total (a) and each tick 

species; Amblyomma americanum (b), Amblyomma maculatum (c), and Dermacentor 

variabilis (d). Region was only significant for A. maculatum burden, with regions with 

different upper-case letters being significantly different at P < 0.05.  
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Figure 2.4 Spatial cluster analysis of tick infestation on cattle in Tennessee. High rate 

clusters were found for the species total (a) and each tick species; Amblyomma americanum 

(b), Amblyomma maculatum (c), and Dermacentor variabilis (d). Low rate clusters were found 

for each species except D. variabilis.  
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Chapter 3: Investigations into the Microbial Communities of Cattle-Associated and 

Questing Amblyomma maculatum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

44 
 

Abstract 

 

The gulf coast tick Amblyomma maculatum is an emerging threat to both human and animal 

health capable of damaging hosts through direct attachment and transmission of pathogens such 

as Rickettsia parkeri and Hepatozoon americanum. The objectives of this study were to 

determine which microbes were consistently detected in the microbiome, and elucidate the 

potential impact of factors such as region of collection, sex, life-stage, and feeding status on the 

microbiome. A total of 182 A. americanum were collected from either hosts (n = 77), cattle 

pastures (n = 92), or laboratory reared (n = 5). We also had several egg batches (n = 5) included 

to investigate the role of vertical transmission of microbes. The Illumina MiSeq platform was 

used to sequence 300 bp paired end reads which were processed using Mothur 1.33.2. The R 

statistical package in R studio was used to compare differences in community structure with 

PERMANOVA and beta dispersion, Chao1 estimated richness, and Inverse Simpson estimated 

diversity. The bacterial phyla Actinobacteria, Bacteroidetes, and Proteobacteria were present in 

all samples (n = 182), with Proteobacteria comprising the largest proportional abundance (75%). 

At the genus level, Francisella was found in all samples. PERMANOVA results revealed 

significant differences in β-diversity for comparisons between environment (P = 0.003), sex of 

questing adults (P = 0.001), and feeding status (P = 0.001). Differences in α- diversity were 

shown for both richness (environment (P = 0.003), feeding status (P = 0.0002)) and diversity 

(sex of questing (P = 0.0001) and attached (P = 0.03) adults).  Collection location and life stage 

had no significant impact on either α- or β-diversity measures. These results provide further 

evidence that Francisella may serve as an endosymbiote to A. maculatum, and demonstrate that 

differences in α- and β-diversity can be driven by tick associated factors. Exploring the 

microbiome of A. maculatum and determining factors that can lead to changes in the microbiome 

is an important first step in understanding heterogenous risk of pathogen transmission and 

identifying endosymbiotic bacteria for use in integrated pest management strategies against this 

pest.  
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Introduction 

 

Amblyomma maculatum Koch, the Gulf Coast tick, is an important medical and veterinary pest. 

Direct attachment to a host causes damage through dermatitis, allergies, introduction of toxic 

salivary compounds, and by providing entry points for secondary infections (Jongejan and 

Uilenberg 2004).  Additionally, this tick is a known vector of several pathogens important to 

human and animal health.  

 

As a medical pest, A. maculatum transmits the pathogen Ricekttsia parkeri (Paddock et al. 2004). 

This pathogen can cause febrile illness in humans, and symptoms can be similar to other Spotted 

fever group Rickettsia including the etiological agent of Rocky Mountain Spotted Fever R. 

rickettsii (Paddock et al. 2008). Additionally, another rickettsial organism (Candidatus R. 

andeanae) has been discovered infecting A. maculatum in the U.S. (Paddock et al. 2010, 

Fornadel et al. 2011, Jiang et al. 2012). The pathogenicity of this Rickettsia is currently 

undetermined.  

 

As a veterinary pest, A. maculatum is damaging to both companion animals and livestock 

especially cattle. Infestations of A. maculatum on cattle can cause damage to the cartilage in the 

ear, leading to a characteristic drooping known as Gotch ear (Edwards 2011). Biting pressure 

from this pest can be severe, and has been shown to cause decreases in weight gain in calves 

(Williams et al. 1977, Williams et al. 1978). Although this species does not currently act as a 

vector of pathogens important to the health of cattle in the U.S., it should be considered a serious 

threat given that it has been shown to be an efficient vector of Ehrlichia ruminantium, the 

causative agent of Heartwater (Uilenberg 1982, Mahan et al. 2000).  In countries where this 

pathogen is endemic, economic losses can measure into the millions of USD (Meltzer et al. 1996, 

Mukhebi et al. 1999, Kivaria 2006). Given that cattle in the U.S. are susceptible to Heartwater, it 

is likely that the establishment of this invasive pathogen would devastate the cattle industry, with 

expected death losses estimated at ≥70% (Wagner et al. 2002). In addition to the food security 

and cattle health risk this tick species represents, A. maculatum is also a vector of Hepatozoon 

americanum, the causative agent of Hepatozoonosis in dogs in the southcentral and southeastern 

U.S. (Vincent-Johnson et al. 1997, Mathew et al. 1998). Although new treatments have improved 

prognosis, there is currently no medication to permanently clear infection and thus dogs are 

prone to relapse (Potter and Macintire 2010).  

 

Measures to control ticks have typically relied on the use of chemical acaricides. Although this 

strategy can be efficacious, there are several important issues with sole reliance on acaricides 

including the development of resistance in pest tick populations. Therefore, the challenge facing 

livestock producers, pet owners, and citizens is to decrease the use of acaricides to control A. 

maculatum while simultaneously maintaining animal and human health and welfare. One option 

for striking a balance between these two goals is to explore new control methods that fit within 

an integrated pest management (IPM) strategy. The aim of this strategy is to combine control 

tactics to decrease impacts to the environment in a cost-effective manner (Bram 1994). This 

strategy is defined by using two or more control tactics in concert to reduce pest populations, and 

is advantageous because it reduces the likelihood of resistance development, and the negative 

impacts to the environment. A potential avenue that could lead to new control tactics lies within 

the tick microbiome, the collection of all microorganisms living on and within the tick host 
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including bacteria, fungi, nematodes, protozoa, and viruses. In this study, and others focused on 

tick microbiomes, bacteria are of special interest because ticks are hosts to several bacteria that 

are closely related to vertebrate pathogens including those in the genera Francisella, Coxiella, 

and Rickettsia (Bonnet et al. 2017). Additionally, there are a diverse set of bacteria whose 

relationship with their tick host is currently unknown.  

 

Having insight into the structure and composition of the tick microbiome can be a source of 

potential control methods including competitive exclusion, paratransgenic control, and 

endosymbiont elimination. It has been suggested that in the ecology of the microbiome, 

vertically transmitted bacteria (mother to offspring) must enhance the host or be lost from the 

population (Fine 1975, Ewald 1987). In this scenario, the advantage to the host of being infected 

with a vertically transmitted parasite is the prevention of infection by horizontally transmitted 

parasites [pathogens] (Lively et al. 2005). Indeed, studies on Tsetse flies (Glossinia morsitans) 

found that the absence of the endosymbiont Wigglesworthia glossinidia through antibiotic 

elimination caused an increase in the host’s susceptibility to infection by Trypanosoma brucei 

the causative agent of African sleeping sickness (Pais et al. 2008). [replace with burgdorfer 

paper]. Paratransgenic transformation is a strategy where endosymbionts within the host are 

targeted for genetic manipulation. For blood feeding arthropods, this could be used to create 

symbiotic bacteria that produce compounds that inhibit infection by pathogenic microbes.  

Durvasula et al. (1997) eliminated or greatly reduce infection of the kissing bug (Rhodnius 

prolixus) by Trypanosoma cruzi, the etiological agent of Chagas disease through transformation 

of the symbiont Rhodococcus rhodnii to produce the antibacterial compound Cecropin A. 

Alternatively, elimination of endosymbionts is another possible strategy. This has been 

demonstrated by reducing reproductive fitness of A. americanum females and survival of 

offspring using antibiotics to eliminate a Coxiella bacterial symbiont (Zhong et al. 2007).  

Before these potential control options can be explored and integrated into an IPM strategy, it is 

imperative to gather baseline information on what microorganisms reside within the microbiome 

and elucidate the identities of the organisms present. Furthermore, understanding the factors that 

can lead to changes in the structure and composition of the microbiome and how these may lead 

to subsequent increases or decreases in risk of pathogen transmission will be vital in 

implementing control strategies and monitoring protocols. 

 

 Extensive research has been dedicated to investigations of the lone star tick Amblyomma 

americanum, which has resulted in the identification of a Coxiella symbiont (Jasinskas et al. 

2007, Klyachko et al. 2007, Clay et al. 2008) likely needed for vitamin production (Smith et al. 

2015). Furthermore, factors such as sex, geographic location, and blood feeding are shown to 

impact the microbiome (Clay et al. 2008, Heise et al. 2010, Ponnusamy et al. 2014, Williams-

Newkirk et al. 2014). Comparatively, few studies have focused solely on the description of the 

microbiome of A. maculatum (Budachetri et al. 2014), with no studies into factors that can cause 

differences in the microbiome. Therefore, the objectives of this study were to 1) determine the 

common microbiome inhabitants between laboratory and field collected samples to elucidate the 

‘core’ A. maculatum microbiome and 2) identify if the factors of sex, collection location, and 

blood-feeding can cause significant changes to microbial community structure. Additionally, we 

were interested in the ability of female ticks to vertically transmit bacteria to their offspring. We 

test the hypothesis that the microbiome of A. maculatum will have common bacteria and that life 

history factors will lead to differences in the microbiome.  
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Materials & Methods 

 

Collection sources: Collections of A. maculatum were conducted at several sites across 

Tennessee, including three University of Tennessee Research and Education Centers (Ames 

Plantation, Middle Tennessee, and Plateau), six livestock auctions, and nine extension agents 

collaborating with cattle producers (up to four). Ticks were also purchased from the Oklahoma 

State University Tick Rearing Facility and served as controls, because they had fed on the same 

animals, were genetically similar, and should have similar microbial communities. All ticks were 

identified to life stage and sex using dichotomous keys (Sonenshine 1979). Additionally, ticks 

were visually assessed for the presence of a blood meal and were separated into three primary 

categories: questing, attached, or engorged.  Ticks that had taken a blood meal (partial to full 

repletion) were considered engorged. Ticks that had inserted mouthparts but no apparent blood 

meal were attached. Ticks that were collected from the host that were not attached by their 

mouthparts, or collected from vegetation, were considered questing.  Following identification 

and blood meal assessment, ticks were placed into 80% ethanol for storage.  

 

Host collection: Ticks were collected directly from cattle run through a chute to maximize 

collection efficiency and protect the safety of both the investigator and the animal. Cattle were 

scratched and visually checked in areas known to be common tick attachment sites (Gladney et 

al. 1974, Barnard 1981, Barnard et al. 1982, Bloemer et al. 1988) for a maximum of five minutes 

to minimize animal stress. Collected ticks were placed into a vial containing 80% ethanol, with 

one vial used per animal.  All ticks from hosts were collected in 2016 under University of 

Tennessee approved IACUC #2192 and originated from 6 sites (Figure 3.1, Appendix C). A total 

of 82 host-collected A. maculatum were used in the analyses and specimens were selected to 

reduce differences based on factors such as age of the host animals, region of collection, and 

collection period. Some female ticks were shipped to the laboratory (n = 14) in non-transparent 

containers without ethanol, resulting in some of these laying egg batches. For 3 samples, one 

female laid one egg batch; however, the remaining specimens that exact identity of the mother 

tick could not be determined. Therefore, the specimens were considered ‘oviposited’, with all 

females in one container associated with the egg batch. Therefore, female specimens were 

comprised of (14 oviposited, 10 attached females, 10 engorged), males were comprised of (48 

attached), and there were 7 egg batches.  

 

Field sampling: Concurrently with host collections described above, drag collections and CO2 -

baited traps were conducted in the same pastures as sampled cattle. No A. maculatum were 

collected using these methods. Consequently, we used sequences from A. maculatum that had 

been previously collected in 2012 and 2013 from vegetation at Ames plantation (35.115366 N, -

89.216735 W), located in western Tennessee. Briefly, these specimens were collected using 

different methods including: CO2-baited traps, drags and flags, traditional dragging and flagging, 

and sweep netting (Mays et al. 2016). Collected ticks were stored in vials containing 80% 

ethanol, and extracted DNA was processed at the same facility using the same procedures as 

host-collected ticks. These specimens comprised of 42 questing females, and 50 questing males.    

 

Lab-reared specimens: Seven lab specimens reared on rabbit or sheep blood were purchased 

from the Oklahoma State University Tick Rearing Facility and included: a single unfed male, 
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one engorged male, an unfed female, one engorged female, one oviposited female, and her 

corresponding egg batch.  

 

DNA extraction: All procedures were performed using sterilized instruments and surfaces to 

reduce contamination by foreign bacteria. Host sampled specimens were also surface sterilized 

by exposing both the dorsal and ventral surface of the ticks to U.V. light for five minutes each. 

This sterilization was not done on eggs, because of the concern that the chorion would not 

adequately protect the bacterial contents of the eggs. Bacterial DNA from the field-collected 

questing specimens (n = 92) were extracted using Qiagen DNA Extraction kits as previously 

described (Mays et al. 2016). DNA from ticks collected from cattle and OSU ticks (n = 95) were 

extracted using the QIAamp 96 DNA QIAcube HT kit (Venlo, Netherlands). Following 

sterilization, tick samples were bisected using a sterile scalpel and placed in 200 uL of sterile 

water overnight to remove ethanol. Water was removed the following day, and 20 uL of ProK, 

180uL of Digestion Solution, and a sterilized metallic bead were added prior to mechanical lysis 

in the QIAgen Tissue Lyser II for 20 seconds at 15 hz. The plates were then flipped and lysed a 

second time. Samples were then centrifuged at 8,000 rpm for 2 minutes and placed overnight 

into the Max Q™ 4450 Benchtop Orbital Shaker (Thermo Fisher, Waltham MA) at 56°C and 75 

rpm. Extracted materials were loaded into the QIAcube HT, which automated the extraction 

process to completion. PCR grade water was subjected to the same extraction procedures and 

used as a negative control. Controls contained a total of 82 bacterial genera, with commonly 

found genera including: Acinetobacter, Stenotrophomonas, Rhizobium, Pseudomonas, and 

Burkholderia.  

 

Microbial sequencing: The V3-V4 region of bacterial 16S rRNA from extracted DNA were 

amplified with the 341F and 785R primers at the Hudson Alpha Institute for Biotechnology 

(Huntsville, AL USA). The Illumina MiSeq platform was used to obtain paired 300 bp reads 

from pooled amplified sequences. Additionally, we wanted to reduce potential batch effects 

between the field collected samples that had been previously sequenced using the same methods.  

The samples that were able to be sequenced and therefore used in further analysis are shown in 

Table 3.1 (Appendix C).  

 

Bioinformatics: MOTHUR is an open-source bioinformatics software package consisting of 

tools for microbial ecologists (Schloss et al. 2009).  All read processing was carried out using 

MOTHUR v1.37.6 available in Newton, a general purpose linux cluster maintained available to 

researchers at the University of Tennessee.  The standard operating procedure for processing 

MOTHUR MiSeq data (Kozich et al. 2013) was followed in addition to the protocol used by 

Trout Fryxell and DeBruyn (2016). Sequences that contained ambiguous bases or homopolymers 

with 8 or more nucleotides were removed. Chimeric sequences were detected and removed using 

the UCHIME chimera algorithm. Potential contaminants, such as mitochondrial or eukaryotic 

sequences, were also removed. Sequences were trimmed to 445 bases following alignment to a 

SILVA reference library. These trimming and removal steps throughout this process served as 

quality control. To further reduce batch effects, the samples from 2016 were processed 

simultaneously with samples from 2012 and 2013. Taxonomy was defined using the Ribosomal 

Database Project Data using 80% or greater similarity (Cole et al. 2013). Reads were binned at 

the genus level into Operational Taxonomic Units (OTUs) based on taxonomy using the 

phylotype clustering method in MOTHUR.  
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Statistical analyses: Analysis of results was performed using R v 3.3.0 (R Core Team 2016) in 

R Studio v 1.0.143 (RStudio Team 2016) with the packages reshape2 (Wickham 2007) and dplyr 

(Wickham and Francois 2015) to structure and manage data, phyloseq (McMurdie and Holmes 

2013) and vegan (Oksanen et al. 2013) to analyze data using diversity measures, analyses and 

ordination methods, and ggplot2 (Wickham 2009), scales (Wickham 2016), grid (R Core Team 

2016), randomcoloR (Ammar 2016), and cowplot (Wilke 2016) to create graphs to visually 

represent data.  PERMANOVA using Bray-Curtis distances of reads scaled to the lowest read 

depth was used to determine differences in distance matrices between groups. Beta dispersion 

was conducted to test variance of groups from PERMANOVA, and make conclusions regarding 

beta diversity. Data for each test was rarefied prior to estimation of both richness (Chao1) and 

diversity (Inverse Simpson), with Kruskal-Wallis used to make comparisons of richness and 

diversity between groups. Samples for each test were selected to eliminate confounding 

variables.  

Results 

 

Description of A. maculatum microbial communities: A total of 9,669,598 sequences were 

obtained from 182 samples, with 27 bacterial phyla consisting of 797 genera level OTUs 

detected. The mean number of OTUs per library was 107.3 (± 3.21), and ranged from 26 – 307, 

with 159 unclassifiable at the genus level. 7 OTUs had a mean proportional abundance >2%, 

including Sphingomonas (3.33 ± 0.43%), Rickettsia (22.24 ± 2.42%), Pseudomonas (3.64 ± 

0.65%), Methylobacterium (3.15 ± 0.34%), an unclassified Flavobacteriaceae (2.67 ± 0.68%), an 

unclassified Chlamydiales (2.47 ± 1.04%), and Francisella (25.05 ± 2.16%) which was detected 

in 100% of samples. At the phylum level, Actinobacteria, Bacteroidetes, and Proteobacteria were 

found in 100% of samples. Proteobacteria was found in high mean abundance (75 ± 1.8%), while 

Acintobacteria (2.9 ± 0.4%) and Bacteroidetes (8.7 ± 1%) comprised a relatively small fraction 

in microbial communities.  

 

Core microbial comparisons: Field collected adult specimens (n = 169) were compared with 

laboratory reared specimen (n = 5) to detect ‘core’ microbial inhabitants. Significant differences 

in richness were observed between field collected samples and laboratory reared specimens 

(Table 2), with laboratory reared samples having lower mean richness (44.21 ± 6.32) compared 

to field specimens (86.01 ± 2.88).  Of the 794 total OTU’s detected in these samples, 122 OTUs 

were shared between field and laboratory samples with the highest proportional abundance 

observed in Francisella (laboratory = 31.9 ± 13.7%, field = 23.3 ± 2.14%).  

 

Collection location comparisons: Host attached males from the middle Tennessee REC (n = 

36), Ames REC (n = 6), and one auction in Dickson County (n = 5) had a total of 547 genera 

with samples from Ames containing 24 unique genera [Modestobacter (0.01 ± 0.01%), 

Polynucleobacter (0.04 ± 0.04%), Dermacoccus (0.003 ± 0.002%)], samples from the Dickson 

County auction containing 32 unique genera [Elusimicrobium (0.02 ± 0.01%), Algoriphagus 

(0.02 ± 0.02%), Cellulosimicrobium (0.03 ± 0.03%)] and samples from the middle Tennessee 

REC containing 180 unique genera [Adhaeribacter (0.03 ± 0.01%), Buttiauxella (0.003 ± 

0.002%), Dokdonella (0.01 ± 0.004%)]. No differences in either alpha or beta diversity were 

found (Table 2). Collection comparisons are shown in Figure 3.2, Appendix C.  
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Sex comparison: Questing males (n = 50) and females (n = 42) had a total of 571 genera. Males 

had 117 unique taxa including Dietzia (0.01 ± 0.01%), Sporocarcina (0.004 ± 0.003%) and 

Tissieriella (0.003 ± 0.002%). Females had 66 unique genera that included Blastopirelulla (0.003 

± 0.002%), Porphyromonas (0.002 ± 0.001%) and Gemella (0.001 ± 0.001%). Significant 

differences in diversity were observed between sexes (Table 2) with females having lower mean 

diversity (3.42 ± 0.52) compared to males (7.64 ± 0.92). Attached males (n = 37) and females (n 

= 10) contained a total of 622 genera. Males had 179 unique OTUs that included Acetivibrio 

(0.01 ± 0.004%), Aquabacterium (0.02 ± 0.01%) Larkinella (0.02 ± 0.01%). Females had 75 

unique OTUs, including Anaerovorax (0.007 ± 0.006%), Citrococcus (0.0008 ± 0.0005%) and 

Desulfosporosinus (0.009 ±0.008%). Again, significant differences in diversity were observed 

between sexes (Table 2) with females having lower mean diversity (2.98 ± 0.76) compared to 

males (10.2 ± 1.32). Abundant OTUs (>10%), alpha and beta diversity comparisons of sexes are 

shown in Figures 3.3 & 3.4 (Appendix C).  

 

Feeding comparisons: 641 OTUs were found in comparisons of feeding status, with questing 

females (n = 42) containing the greatest number of unique genera (138) [e.g. Curvibacter (0.02 ± 

0.003%), Dechloromonas (0.2 ± 0.04%), Schlegelella (0.1 ± 0.03%)], followed by attached 

females (99) [Cellulomonas (0.05 ± 0.04%), Leadbetterella (0.02 ± 0.01%), Muricauda (0.002 ± 

0.001%)], oviposited females (16) [Lampropedia (0.01 ± 0.005%), Ketogulonicigenium (0.0004 

± 0.0003%), Anaerobacter (0.001 ± 0.0003%)]and engorged females having the fewest unique 

genera (9) [Agromyas (0.02 ± 0.02%), Corallococcus (0.01 ± 0.01%), Pastuerella (0.1 ± 0.1%)].  

Analysis revealed differences in both beta and alpha diversity (Table 2), with engorged females 

(55.06 ± 9.07) having the lowest mean richness compared to questing (100.12 ± 5.73), attached 

(130.07 ± 18.37), and oviposited (83.23 ± 11.70) females. Figure 3.5 (Appendix C) depicts 

abundant OTUs, as well as comparisons between feeding levels.  

 

Horizontal similarities in mother and egg batches: Females that were oviposited (n = 10) and 

corresponding egg batches (n = 5) were compared to determine potential transovarial 

transmission of microbes. In total, there were 322 OTUs in these samples with 96 unique genera 

found in adults (Gp4 (0.03 ± 0.02%), unclassified Acetobacteraeceae (0.03 ± 0.02%), 

unclassified Betaproteobacteria (0.02 ± 0.01%)) and 41 unique genera found in eggs 

(Elusimicrobium (0.01 ± 0.01%), Brevibacterium (0.01 ± 0.01%), Filimonas (0.01 ± 0.01%)). 

There were no significant differences in either alpha or beta diversity measures demonstrated 

(Table 3.2, Appendix C). Principle coordinate ordination (Figure 3.6, Appendix C) demonstrated 

that the mothers are not necessarily closest to their own offspring.  

 

Discussion 

 

This study identified several taxa that were ubiquitous in all samples tested. At the phylum level 

Proteobacteria, Actinobactera, and Bacteroidetes were found in all samples. These results match 

closely to previous investigations of the microbiome of A. maculatum which found 

Proteobactera, Actinobacteria, Firmicutes, and Bacteroidetes, with Protebacteria acting as the 

most dominant phyla (Budachetri et al. 2014, Budachetri et al. 2017). At the genus level, 

Francisella was detected in all samples tested. Francisella like endosymbionts (FLEs) have been 

previously detected in A. maculatum (Scoles 2004, Budachetri et al. 2014, Gerhart et al. 2016, 

Budachetri et al. 2017) and have been extensively documented in other tick species including 
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Ornithodoros moubata, Ornitodoros porcinus, Dermacentor andersoni, Dermacentor variabilis, 

Dermacentor albipictus, Dermacentor hunteri, Dermacentor nitens, and Dermacentor 

occidentalis (Niebylski et al. 1997, Noda et al. 1997, Sun et al. 2000, Scoles 2004, Clayton et al. 

2015). The exact functional role that FLEs fulfill within the host are currently unknown, 

although in A. maculatum it has been shown to be closely related to the mammalian pathogen 

Francisella tularensis (Gerhart et al. 2016). It is possible that FLEs are necessary to the 

development of their host, as evidenced by both transovarial and transtadial transmission in D. 

albipictus (Baldridge et al. 2009). Results from this study add evidence to this, as egg batches 

were dominated by Francisella (44.6 ± 17.3%), suggesting maternal transmission.  Further 

studies into characterizing the functional role of the FLE present in A. maculatum are warranted 

to determine its suitability as a target of control within an integrated tick management program.  

Our results demonstrated that for both questing and host-associated adults, there was no 

difference in richness between sexes but a significant difference in diversity. Reduced diversity 

of female ticks compared to male ticks has not been previously studied in A. maculatum, but has 

been noted for other species of ticks including Ixodes scapularis (Van Treuren et al. 2015, 

Zolnik et al. 2016) and Amblyomma americanum (Ponnusamy et al. 2014, Williams-Newkirk et 

al. 2014), with dominance of Rickettsia found to be characteristic of females. In this study, both 

questing (♀ (20 ± 4.1%), ♂ (17.4 ± 4.1%)) and attached (♀ (48.9 ± 13.9%), ♂ (28.9 ± 5.9%)) 

ticks had relatively similar proportional abundance of Rickettsia; However, Francisella was 

markedly different between sexes for both questing (♀ (45.5 ± 4.8%), ♂ (16.6 ± 2.9%)) and 

attached (♀ (23.2 ± 8%), ♂ (8.2 ± 2.2%) adults. Dominance of Francisella within females may 

serve to increase the likelihood of transovarial transmission to offspring (Williams-Newkirk et 

al. 2014); Indeed, FLEs can invade malphigian tubules and ovaries of their host (Noda et al. 

1997), a necessary precursor to transovarial transmission. The lack of significant differences in 

α- and β-diversity between mother ticks and egg batches in this study could be potentially 

attributed to this phenomenon.  Similar findings demonstrated that field captured females and 

larvae had the lowest diversity compared to nymphs and males of I. scapularis (Zolnik et al. 

2016).  Further studies into the mechanisms by which sexually divergent microbial communities 

arise in adult ticks is warranted.  

 

Our results indicated no differences between ticks collected from different locations in either α- 

or β-diversity measures. These results are counter to evidence that location can impact microbial 

communities in other tick species (Clay et al. 2008, Williams-Newkirk et al. 2014, Van Treuren 

et al. 2015). An important consideration is that these studies investigated ticks from different 

states in the U.S. separated by large geographical distances. In comparison, differences in 

microbial communities were not shown for ticks from a small geographic area within Indiana 

(Hawlena et al. 2013). In our current study, tick samples tested between locations were found 

attached to their host, which could have stabilized the differences between samples. Currently 

the impact of the host is unclear, with some evidence that differences in microbial community 

structure are not derived by blood feeding (Hawlena et al. 2013, Rynkiewicz et al. 2015, Zolnik 

et al. 2016). However, diversity of bacterial taxa was previously shown to differ between I. 

ricinis collected from three forests in the Netherlands with the potential explanatory variable 

being local distribution of available hosts (Van Overbeek et al. 2008). This is supported by the 

impact of host choice (mammalian or reptilian) on microbial community structure and richness 

of I. pacificus (Swei and Kwan 2017). It is possible that the abundance and presence of suitable 

hosts for A. maculatum are not different between collection locations investigated, resulting in 
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the observed findings of this study. Further research to clarify the small geographic scale effects 

on the microbiome of A. maculatum are necessary for understanding potentially heterogenous 

distribution of pathogens, which is important for identifying risk areas of pathogens that impact 

human and animal health.  

 

This study revealed that diversity was not significantly different between stages of feeding 

engorgement, but that richness and β-diversity were affected. Similarly, blood feeding caused 

significant differences in community composition with no effect on the diversity of the 

microbiome of I. persulcatus (Zhang et al. 2014). A decrease in richness as engorgement 

increases is likely driven by the influx of proteins and toxic metabolites following a blood-meal, 

resulting in a bottleneck effect that alters microbiome composition, as seen in the malaria 

mosquito Anopheles gambiae (Wang et al. 2011). This could explain why engorged and 

oviposited ticks had the lowest mean richness; counter intuitively attached ticks had the highest 

mean richness (130.07 ± 18.37). Blood feeding in A. americanum resulted in increased diversity, 

proposed to be driven by both the reduction of dominant bacteria and the increased detection of 

less common taxa (Heise et al. 2010). These factors could help to explain the increased richness 

at attachment if these ticks had taken blood meals. Another potential factor that could cause the 

pattern observed in our current study is a greater number of contaminants resulting from host 

interaction compared to environmental contaminants from questing ticks. Ultimately, the cause 

of greatest richness at attachment is worth further exploration.  

 

The controls used in this study were contaminated by several bacterial genera. Many of these 

genera, including: Pseudomonas, Stenotrophomonas, Burkholderia, Acinetobacter, and 

Sphingomonas are common soil or water contaminants that can be introduced from biological 

grade water, PCR reagents, or DNA extraction kits (McFeters et al. 1993, Nogami et al. 1998, 

Tanner et al. 1998, Corless et al. 2000, Kulakov et al. 2002, Grahn et al. 2003, Mohammadi et al. 

2005, Mühl et al. 2010, Laurence et al. 2014, Salter et al. 2014). The number of studies on the 

tick microbiome that discuss the identity of contaminants are few, although some have reported 

genera including Stenotrophomonas (Clay et al. 2008), and Acinetobacter (Clayton et al. 2015). 

Samples for this study were stored in 80% ethanol and U.V. sterilized, therefore it is likely that 

contamination was introduced during subsequent sample processing although it cannot be 

determined with certainty the exact source. Contaminants are problematic because they can 

impact results and subsequent conclusions, especially in low bacterial biomass environments 

where contaminants become the majority of sequence reads (Salter et al. 2014, Clayton et al. 

2015). Furthermore, the control run with the samples processed in 2016 had both Francisella and 

Rickettsia. If the control serves as an indicator of potential contamination of the samples from 

2016 is unclear, as Francisella and Rickettsia were not detected in the control used for the 2012 

and 2013 specimens, but were found in great abundance in the respective samples; Furthermore, 

we would expect to find these genera in high abundance based on previous research that 

explored the microbiome of A. maculatum. This current research should be added to the growing 

body of evidence that microbiome studies using amplified bacterial 16s rRNA should take 

precautions when collecting, storing, and processing samples to prevent contamination leading to 

potentially spurious results. Some precautions that future researchers could exercise are outlined 

in Salter et al. (2014) and include randomization of sample processing, maximizing the starting 

bacterial biomass of samples, and using multiple no template controls to identify contaminant 

sources.  
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The results from this study have demonstrated that the microbiome of A. maculatum has several 

bacterial taxa that were identified in all samples tested, which gives support to the idea that these 

bacteria are core components of the microbiome.  To our knowledge, this research represents the 

first attempt to describe how factors such as sex, feeding status, and collection location impact 

the microbial communities of A. maculatum. Results from this research give important insights 

into the microbial communities of this important vector, which will be vital in tracking emerging 

pathogens important to human and animal health and gaining future understanding of risk factors 

for increased pathogen transmission. This will become paramount upon the introduction of the 

devastating cattle pathogen Ehrlichia ruminantium. Future studies should aim to clarify the role 

of Francisella in A. maculatum, and further explore interactions between microbes to determine 

the best means to incorporate these factors into an integrated control strategy.  
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Appendix C 

 

Table 3.1 Specimens of A. maculatum used for analysis.   

 

  Region Control  

Stage Status Middle Western Laboratory Total 

Male Questing 0 50 0 50 

Attached 36 11 1 48 

Engorged 0 0 1 1 

Female Questing 0 42 0 42 

Attached 7 3 1 11 

Engorged 10 0 1 11 

Oviposited 10 0 1 11 

Egg Batch Developing 7 0 1 8 

Total  70 106 6 182 

 

Samples listed below produced viable libraries. Of the original number of submitted sampled, 

five samples did not produce libraries, including 1 attached male and 4 oviposited females from 

middle Tennessee. 

 

 

Table 3.2 Summary of statistics from comparisons across multiple factors.  

 

Comparison 

α diversity 

H (P) 

β diversity 

F (P) 

Chao1 Inverse Simpson PERMANOVA Beta Dispersion 

Environmental 8.55 (0.003)* 0.07 (0.8) 3.46 (0.003)* 12.1 (0.003)* 

Location 2.2 (0.33) 1.21 (0.55) 0.16 (0.09) 0.75 (0.47) 

Sex 

Questing 2.66 (0.10) 14.6 (0.0001)* 8.96 (0.001)* 9.66 (0.002)* 

Attached 0.93 (0.33) 4.67 (0.03)* 1.91 (0.08) 6.57 (0.01)* 

Engorgement 19.7 (0.0002)* 4.68 (0.2) 4.21 (0.001)* 0.85 (0.48) 

Transovarial 0.38 (0.54) 0.96 (0.33) 0.68 (0.64) 0.81 (0.41) 

 

Results in alpha diversity are reported as Kruskal-Wallis Chi2 with respective P values [H (P)]. 

Beta diversity is reported by F value and P values [F(P)]. Significant values are bolded and 

marked with an asterisk (*). At the alpha diversity level, only sex caused differences in diversity, 

while engorgement and environment drove differences in richness. True differences in beta 

diversity (those without significant Beta Dispersion) were observed only for engorgement. 



www.manaraa.com

62 
 

 
 

Figure 3.1 Collection sites where A. maculatm was captured.  A. maculatum was never 

captured in eastern Tennessee, owed primarily to its recent expansion into the state 
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Figure 3.2 Graphs for collection location comparisons. Relative abundance of bacterial genera 

that comprise >10% of the total bacterial community is shown in (A), with each stack 

representing a sample and white space denoting bacterial genera that comprised < 10% relative 

abundance in the microbiome. 10% was used as the cutoff to reduce the number of unique colors 

required (98 colors at >2 %). Non-metric Multidimensional Scaling (NMDS) of Bray Curtis 

distances of samples from three collection locations (B) , PERMANOVA revealed no significant 

differences in β-diversity. Kruskal wallis revealed no significant differences in either richness 

(chao1) or diversity (inverse simpson) (C).  
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Figure 3.3 Bacterial genera that comprised >10% of the total taxa, for both questing (A) 

and attached (B) separated by sex (F= Female, M= Male). As in previous figures, each stack 

denotes a sample, with white space indicating bacteria that comprised < 10% of the relative 

abundance of the microbiome.  
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Figure 3.4 NMDS and box plot differences by sex (F = Female, M = Male) for questing (A,) 

and attached (B) ticks. Results from PERMANOVA showed a potential difference in β-

diversity only for questing ticks, although beta dispersion was significant. In α-diversity richness 

was not significantly different between sexes of either feeding status, but diversity (inverse 

simpson) was significantly different for both comparisons.  
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Figure 3.5 Comparisons of engorgement levels among female ticks. Relative abundance of 

bacterial taxa that comprise >10% of the total abundance are shown, with Francisella (Grey) and 

Rickettsia (Purple) being quite common (A). NMDS of engorgement levels, which demonstrates 

clustering of questing (purple) samples and host associated (blue, green and pink) (B). Boxplot 

of engorgement levels (C), shows that richness (Chao1) is lower for engorged females (E) 

compared to questing (Q), attached (A), and oviposited (O). No differences observed in diversity 

(Inverse Simpson) between engorgement levels.  
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Figure 3.6 Principle Coordinate Ordination (PCoA) demonstrating the bray- curtis 

distance between mothers and egg batches. Colors represent the pairings of mothers and egg 

batch (A – E). PERMANOVA demonstrated no significant differences between groups. 

Interestingly, the distance between eggs batches and the respective mother was sometimes 

greater than the distance between egg batches and unrelated mothers.  

 
 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

68 
 

Chapter 4: Conclusion 
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During my thesis research, I evaluated and identified information critical for developing an 

Integrated Pest Management (IPM) strategy for ticks infesting beet cattle in Tennessee. First, I 

determined that three species primarily infest cattle, and that seasonal and regional effects were 

only significant for the gulf coast tick A. maculatum with collections greatest in the spring and 

summer in western Tennessee. Cluster analysis revealed that the areas of the state at the highest 

risk of exposure to ticks were at the border of the middle and western region. Second, I found 

that the RECs and auctions were the best means to monitor for invasive ticks and proposed that 

the RECs would act as sentinels and the auctions would serve as an early detection system. 

Additionally, my investigation into the microbiome of A. maculatum revealed that Francisella 

and Rickettsia were both common and abundant and that the microbiome could change due to 

sex of the tick, and engorgement level. 

 

Combined, my thesis serves as a foundation for building a strategy to combat endemic and 

invasive tick threats to the cattle industry; however, several additional steps need attention to put 

the results from this work into practice and to give producers and stakeholders the best chance of 

tackling the challenges that ticks and tick-borne disease pose. Several of these future steps, their 

rationale, and my opinions are discussed below and focus on: tick ecology, economic impacts, 

and education. 

Tick Ecology: Organismal and Microbial 

 

Although regions and time of year when ticks can be expected to parasitize cattle was 

documented in this study, several questions remain that would contribute to a deeper 

understanding of the ecology of these pests and ultimately provide the basis for an IPM program. 

One line of inquiry that deserves further investigation is questing activity in cattle pastures. In 

fact, I began to explore this research question by conducting drag and CO2-baited trap collections 

at the RECS. Briefly, one CO2-baited trap was placed for every 5 acres of pasture. Traps were set 

prior to host sampling, with three drag samples done following completion of host sampling and 

using the traps as a starting point. Drags were done in 100m long transects, with 20m between 

transects. The drag cloth was inspected for ticks every 20m, with any ticks collected placed into 

a vial of 80% ethanol. The original intention was to compare Amblyomma americanum ticks 

collected in pastures to those collected from hosts to investigate how region, trap-type and blood-

feeding might drive differences in microbial community structure. Ultimately, this objective was 

altered due to few A. americanum captured in eastern Tennessee pastures (n=3) and because 

several publications have previously investigated microbial communities of this species (Clay et 

al. 2008, Heise et al. 2010, Williams-Newkirk et al. 2014). Further investigation into tick 

questing in cattle pastures is warranted, especially into increasing the efficiency of performing 

these collections. Pasture sampling in this study was typically conducted in the late morning and 

afternoon.  It is possible that sampling did not coincide with the peak timing for tick questing 

activity, which may fluctuate depending on favorable environmental conditions such as 

temperature and humidity. Therefore, research into questing activity could help determine when 

cattle are at the greatest risk of exposure to ticks. 

 

Another factor to consider is that the ticks found in this study undergo a three-host life cycle, 

with the immature stages preferring to feed on small mammals (A. maculatum, D. variabilis) and 

birds (A. americanum, I. scapularis) (Bishopp and Trembley 1945).  These hosts can easily enter 

cattle pastures unimpeded by gates meant to contain cattle. A trapping study focused on these 
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alternate hosts could answer questions regarding how ticks invade pastures, and assist in devising 

future control tactics targeting these hosts. 

 

In addition to further investigations into tick activity and dispersal, questions about the microbial 

ecology of tick microbiomes remain. Objective 2 of this research focused on a less studied 

species, A. maculatum, with results demonstrating differences in microbial community structure 

under varying conditions including sex and engorgement level. Importantly, Francisella was 

found in all tick samples tested, which corroborated results by previous research into the A. 

maculatum microbiome (Budachetri et al. 2014, Budachetri et al. 2017). Although recent 

investigations have discovered that the Francisella symbiont within A. maculatum evolved from 

closely related animal pathogens (Gerhart et al. 2016), no studies have determined the role of this 

endosymbiont. This information will be vital to gaining an understanding of the importance of 

this symbiont to the survival and physiology of A. maculatum. For example, in A. americanum, 

the symbiotic bacteria Coxiella was elucidated to contribute to reproductive fitness (Zhong et al. 

2007) with sequencing revealing that it contained genes that coded for synthesis of several 

vitamins and cofactors necessary for feeding on a nutrient deficient source such as blood (Smith 

et al. 2015). Knowledge of the functional role of Francisella within A. maculatum could 

definitively determine if this bacterium should be the target of future control efforts within an 

IPM strategy.  This will be especially vital to protect cattle health and the cattle industry as a 

whole from devastating losses following the introduction of Ehrlichia ruminantium. 

Investigations into the microbiome of D. variabilis are also warranted since it was collected in a 

wide geographic and temporal range in Tennessee and is a vector of the agent of Bovine 

Anaplasmosis, Anaplasma marginale. Studies have found that D. variabilis does contain a 

Francisella symbiont (Sun et al. 2000, Scoles 2004), but there have been no studies that have 

investigated the microbiome of this species in its entirety. Establishing its baseline microbial 

community and understanding factors that lead to changes in microbial community structure 

could provide critical information necessary to develop BA risk assessments in the future and 

modulate vectorial capacity. 

Economic Impact 

 

Objective 1 of this research was able to determine which ticks were pests of cattle and elucidate 

both the seasonal phenology and regional distribution of these species.  These components are 

vital for understanding the life history of these pests and contribute to the baseline information 

needed to move towards an IPM program. The other key component required is the economic 

injury threshold (ET). The ET is a guiding principle in IPM which allows producers to estimate 

the pest density at which they will experience economic losses. It is at this point that chemical 

methods would be used to decrease the pest population back below damaging levels. 

Investigating this would translate damage the ticks inflict upon cattle into a monetary amount, 

which could increase producer interest and participation in future research endeavors. This 

would ultimately increase collaboration, leading to a more robust monitoring program. 

Each species should have a corresponding economic threshold which will vary depending upon 

factors such as location, vector status of the tick, its vectorial capacity and the disease severity 

(Black and Moore 2004). These last two factors will be important considerations when 

determining an economic threshold for D. variabilis given it is a vector of A. marginale. Some 

tick species in this study have previously undergone investigation into damage estimates for 

cattle. For A. americanum, it was found that 15 feeding females per one animal could lead to 
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damage to pre-weaner cattle (Barnard 1985). Steers infested with low levels of A. maculatum 

(n=25-30) would weigh 14 kg less on average compared to control animals (Williams et al. 

1977).  These established damage levels should be considered a starting point, but not used as 

current thresholds for an IPM strategy in Tennessee because these estimates were determined in 

Oklahoma over 40 years ago when producers, pest populations, and animal genetics were quite 

different from current conditions. Therefore, thresholds need to be developed to meet the current 

needs of Tennessee producers. 

Education 

 

This project has offered several opportunities for education and outreach, including a Youtube 

video (Theuret 2016) which demonstrated to producers and extension agents participating in the 

study the methods employed and how to remove ticks from an animal. Additionally, I shared my 

research findings directly with cattle producers at two meetings in 2017, including the UT Beef 

and Forage Center meeting and the Advanced Master Beef Producer class. 

 

Although these steps increased awareness and knowledge of ticks to cattle producers, an overall 

lack of awareness and understanding of the threats that ticks pose to the cattle industry persists. 

In my opinion, this arises from a general focus on fly control driven by feeding differences 

between flies and ticks. Flies, especially the horn fly (Heamatobia irritans), often feed on cattle 

in prolific numbers in visible parts of the body (back, face). In these situations, producers can 

easily spot congregations of feeding flies even from a distance.  Comparatively, ticks feed in 

protected regions of the body (ears, under the tail, legs) which makes their presence harder to 

detect; often ticks are noticed only when fully engorged females are found the few times cattle 

are worked in a chute. This combination of factors creates a ‘blind spot’ for tick threats. 

This ‘blind spot’ is supported by several sources of information that are either currently lacking 

or are not used to their full potential. The University of Tennessee (UT) Department of 

Entomology & Plant Pathology (EPP) currently lacks an extension veterinary entomologist. This 

vacancy may create cascading effects that ultimately contribute to the lack of information found 

on ticks. For instance, EPP compiles control recommendations for pests into the Insect and Plant 

Diseases Control Manual and has no recommendations currently for pests of livestock (UT-EPP 

2017) due to a lack of expertise regarding current pesticide registration and husbandry practices. 

This is further reflected in two documents published by the UT extension service that directly 

pertain to beef cattle production: the master beef producer manual and the beef production 

calendar. Within the master beef producer manual, ticks are mentioned as one of the means by 

which cattle can become infected with BA, but are not listed as ectoparasites of concern (flies, 

lice, and grubs are discussed) (Daugherty et al. 2013).  The management calendar provides 

producers with a monthly checklist for cattle production, and does mention flies and their control 

but does not mention ticks (UT-AES 2017). 

 

It is for these reasons that further steps need to be taken to address the issue of lack of 

information which impedes the development of control strategies. As mentioned previously, 

studies on the economic thresholds of the ticks that infest cattle could serve to shift ticks from 

the ‘blind spot’ and into the general discourse regarding serious health threats to cattle. The best 

potential solution towards resolving the issue of a lack of information would be for UT to 

consider creating a position for an extension veterinary entomologist to help protect the health of 

livestock and producer livelihood in the state. This position would play a pivotal role in 
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disseminating information to producers, and would provide much needed expertise that could 

eventually allow for more in-depth recommendations in UT extension documents pertaining to 

tick threats to livestock production. 

Conclusion 

 

This current research should not be considered self-contained, but rather as a spring board for 

future studies that will build upon my research findings to protect the health of cattle in 

Tennessee and surrounding areas. Research into the topics described above will provide greater 

insight into aspects of tick life history, which allows for future researchers to identify the best 

means of controlling them. The greatest impediment to an IPM strategy is a lack of concern for 

tick threats among cattle industry stakeholders; therefore, increased education and outreach 

needs to be a priority in order to effectively collaborate on research endeavors. 
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